Linear Algebra - Part 37

$$
\begin{aligned}
& A x=b \xrightarrow{\text { argamented mathix }}(A \mid b) \\
& A \Leftrightarrow \tilde{A}: \quad M A=\tilde{A} \Longleftrightarrow A=M^{-1} \tilde{A}
\end{aligned}
$$

For the sstem of linear equations: $\quad A x=b \longleftrightarrow M A x=M b \quad$ (new system) Example: $A=\left(\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right) \leadsto M A=\left(\begin{array}{cc}1 & 3 \\ 0 & -7\end{array}\right)$

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{c}
-\alpha_{1}^{\top}- \\
\vdots \\
-\alpha_{m}^{\top}-
\end{array}\right) \\
& C^{\top}=\left(0, \ldots, 0, c_{i}, 0, \ldots, 0, c_{j}, 0, \ldots, 0\right) \Rightarrow c^{\top} A=c_{i} \alpha_{i}^{\top}+c_{j} \alpha_{j}^{\top}
\end{aligned}
$$

Example:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\lambda & 0 & 1
\end{array}\right)\left(\begin{array}{l}
-\alpha_{1}^{\top}-\alpha_{2}^{\top}-\alpha_{3}^{\top}-\alpha_{1}^{\top}- \\
-\alpha_{2}^{\top}- \\
\alpha_{3}^{\top}+\lambda \cdot \alpha_{1}^{\top}
\end{array}\right)
$$

$$
Z_{Z_{3+\lambda 1}} \text { invertible with inverse: }\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\lambda & 0 & 1
\end{array}\right)
$$

Definition:

$$
Z_{i+\lambda j} \in \mathbb{R}^{m \times m}, i \neq j, \lambda \in \mathbb{R}
$$

defined as the identity matrix with λ at the (i, j) th position.
Example: (exchanging rows)

$$
\underbrace{\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)}_{P_{1 \leftrightarrow 3}}\binom{-\alpha_{1}^{\top}-\alpha_{2}^{\top}-}{-\alpha_{3}^{\top}-\alpha_{3}^{\top}-}=\binom{-\alpha_{2}^{\top}-}{-\alpha_{1}^{\top}-}
$$

Definition:

$$
\begin{array}{r}
P_{i \leftrightarrow j} \in \mathbb{R}^{m \times m}, i \neq j, \text { defined as the identity matrix where the } \\
i \text { ith and the } j \text { th rows are exchanged. }
\end{array}
$$

Definition: (scaling rows)

$$
\begin{aligned}
& \left.\quad\left(\begin{array}{ccc}
d_{1} & & \\
& \ddots & \\
& & d_{m}
\end{array}\right)\left(\begin{array}{c}
-\alpha_{1}^{\top}- \\
\vdots \\
-\alpha_{m}^{\top}-
\end{array}\right)=\left(\begin{array}{c}
-d_{1} \alpha_{1}^{\top}- \\
\vdots \\
\text { with } d_{k} \neq 0
\end{array}\right) . \begin{array}{l}
d_{m} \alpha_{m}^{\top}-
\end{array}\right) .
\end{aligned}
$$

Definition: row operations: finite combination of $Z_{i+\lambda_{j}}, P_{i \leftrightarrow j},\left(\begin{array}{lll}d_{1} & & \\ & \ddots & \\ & & d_{m}\end{array}\right), \ldots$

$$
\left(\text { for example: } M=Z_{3+71} Z_{2+81} P_{1 \leftrightarrow 2}\right)
$$

Property: For $A \in \mathbb{R}^{m \times n}$ and $M \in \mathbb{R}^{m \times m}$ (invertible), we have:

$$
\begin{aligned}
& \operatorname{Ker}(M A)=\operatorname{Ker}(A), \quad \operatorname{Ran}(M A)=M \operatorname{Ran}(A) \\
& \therefore\{M y \mid y \in \operatorname{Ran}(A)\}
\end{aligned}
$$

