Linear Algebra - Part 36

System of linear equations:

$$
\left.\left.\begin{array}{rl}
2 x_{1}+3 x_{2}+4 x_{3} & =1 \\
4 x_{1}+6 x_{2}+9 x_{3} & =1 \\
2 x_{1}+4 x_{2}+6 x_{3} & =1
\end{array}\right\} \begin{array}{l}
3 \text { equations } \\
3 \text { unknowns }
\end{array}\right\}
$$

$$
\left(\begin{array}{lll|l}
2 & 3 & 4 & 1 \\
4 & 6 & 9 & 1 \\
2 & 4 & 6 & 1
\end{array}\right)
$$

Example:

$$
\begin{aligned}
& x_{1}+3 x_{2}=7 \quad(\text { equation } 1) \\
& 2 x_{1}-x_{2}=0 \text { (equation 2) } \rightarrow x_{2}=2 x_{1} \\
& \begin{aligned}
\Rightarrow x_{1}+3\left(2 x_{1}\right) & =7 \\
\Leftrightarrow 7 x_{1} & =7 \Leftrightarrow x_{1}=1 \leadsto x_{2}=2
\end{aligned}
\end{aligned}
$$

\Rightarrow Only possible solution: $X=\binom{1}{2} \quad$ Check? $\sqrt{ }$

$$
\Rightarrow \text { The system has a unique solution given by } X=\binom{1}{2}
$$

Better method: Gaussian elimination

Example: $\quad x_{1}+3 x_{2}=7 \quad$ (equation 1)

$$
2 x_{1}-x_{2}=0 \quad(\text { equation } 2)-2 \cdot(\text { equation } 1)
$$

eliminate X_{1}

$$
\begin{array}{ll}
x_{1}+3 x_{2}=7 \quad(\text { equation 1) } \\
0-7 x_{2}=-14 \quad(\text { equation } 2) \cdot\left(-\frac{1}{7}\right)
\end{array} \quad \begin{array}{r}
x_{1}+3 x_{2}=7 \quad \text { (equation 1) } \\
x_{2}=2 \quad \text { (equation 2)" } \\
\end{array} \quad \begin{aligned}
& x=\binom{1}{2} \text { solution }
\end{aligned}
$$

