BECOME A MEMBER

ON STEADY

The Bright Side of Mathematics Linear Algebra - Part 33 $A \in \mathbb{R}^{m \times n} \longrightarrow A^{T} \in \mathbb{R}^{n \times m}$ standard inner product in $\mathbb{R}^n \longrightarrow \langle u, v \rangle \in \mathbb{R}$ $\approx \mu^{T} \vee$ <u>Proposition</u>: For $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^{n}$, $y \in \mathbb{R}^{m}$: $\langle y, Ax \rangle = \langle A^T y, x \rangle$ inner product in \mathbb{R}^m inner product in \mathbb{R}^n

<u>Alternative definition:</u> A^{T} is the only matrix $B \in \mathbb{R}^{h \times m}$ that satisfies: $\langle y, Ax \rangle = \langle \underline{3}y, x \rangle$ for all x, y