Linear Algebra - Part 32

Transposition: changing the roles of columns and rows

$$
\begin{array}{r}
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)^{\top}=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right) \\
\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right)^{\top}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \\
\text { For } a \in \mathbb{R}^{n} \text { we have: }\left(a^{\top}\right)^{\top}=a
\end{array}
$$

Definition: For $A \in \mathbb{R}^{m \times n}$ we define $A^{\top} \in \mathbb{R}^{n \times m}$ (transpose of A) by:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \Rightarrow A^{\top}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right)
$$

Examples:
(a) $A=\left(\begin{array}{llll}1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0\end{array}\right) \Rightarrow A^{\top}=\left(\begin{array}{ll}1 & 2 \\ 2 & 0 \\ 0 & 3 \\ 1 & 0\end{array}\right)$
(b) $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \Rightarrow A^{\top}=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$
(c)

$$
A=\left(\begin{array}{lll}
1 & 4 & 5 \\
4 & 2 & 0 \\
5 & 0 & 3
\end{array}\right) \Rightarrow A^{T}=\left(\begin{array}{lll}
1 & 4 & 5 \\
4 & 2 & 0 \\
5 & 0 & 3
\end{array}\right) \quad \text { (symmetric matrix) }
$$

Remember:

$$
(A B)^{\top}=B^{\top} A^{\top}
$$

