Linear Algebra - Part 31

matrices
$A, B \in \mathbb{R}^{n \times n}$

We have: $\quad f_{B^{-1}} \circ f_{A^{-1}}=\left(f_{A B}\right)^{-1} \Rightarrow(A B)^{-1}=B^{-1} A^{-1}$

Important fact: $\quad f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \quad$ linear and bijective

$$
\Rightarrow f^{-1}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \quad \text { is also linear }
$$

Proof: $f^{-1}(\lambda y)=f^{-1}(\lambda \cdot f(x)) \underset{\hat{f} \text { linear }}{=} f^{-1}(f(\lambda x))=\lambda \cdot x=\lambda f^{-1}(y)^{\checkmark}$ There is exactly one x with $f(x)=y$

$$
\begin{aligned}
f^{-1}(y+\tilde{y}) & =f^{-1}(f(x)+f(\tilde{x}))=f_{\tilde{f} \text { linear }}^{-1}(f(x+\tilde{x}))=x+\tilde{x} \\
& =f^{-1}(y)+f^{-1}(\tilde{y}) \quad \vee
\end{aligned}
$$

