ON STEADY

The Bright Side of Mathematics

Linear Algebra - Part 30

injectivity, surjectivity, bijectivity for square matrices

system of linear equations: $Ax = b \stackrel{\text{if A invertible}}{\Longrightarrow} A^{-1}Ax = A^{-1}b \Longrightarrow x = A^{-1}b$

 $A \in \mathbb{R}^{h \times h}$ square matrix. $f_A : \mathbb{R}^h \longrightarrow \mathbb{R}^h$ induced linear map.

Then: \int_A is injective \Longrightarrow \int_A is surjective

<u>Proof:</u> (=>) f_A injective, standard basis of \mathbb{R}^n (e_1, \dots, e_n) $\Longrightarrow \left(f_A(e_1), \dots, f_A(e_n) \right)$ still linearly independent

=> fA is surjective

(=) f_A surjective

For each $y \in \mathbb{R}^n$, you find $x \in \mathbb{R}^n$ with $f_A(x) = y$.

We know: $X = X_1 e_1 + X_2 e_2 + \cdots + X_n e_n$ $\gamma = f_A(x) = x_1 f_A(e_1) + x_2 f_A(e_2) + \cdots + x_n f_A(e_n)$

 $\implies (f_A(e_1), ..., f_A(e_n))$ spans \mathbb{R}^n

 \Longrightarrow $(f_A(e_1), ..., f_A(e_n))$ linearly independent

Assume $f_A(x) = f_A(\widetilde{x}) \implies f_A(x-\widetilde{x}) = 0$ $\implies \bigvee_{1} f_{A}(e_{1}) + \bigvee_{2} f_{A}(e_{2}) + \cdots + \bigvee_{n} f_{A}(e_{n}) = 0$

lin. independence
$$V_1 = V_2 = \cdots = V_n = 0$$

 \Rightarrow $x = \tilde{x}$ \Rightarrow f_A is injective