Linear Algebra - Part 29
 $A \in \mathbb{R}^{m \times n} \longleftrightarrow f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ linear map

Definition: Identity matrix in $\mathbb{R}^{n \times n}$:

$$
\mathbb{1}_{n}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & \vdots \\
\vdots & 0 & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right) \quad \begin{aligned}
& \text { other notations: } \\
& I_{n}, i d, I d, E_{n}
\end{aligned}
$$

Properties:

$$
\left.\begin{array}{rl}
\mathbb{1}_{n} B=B & \text { for } B \in \mathbb{R}^{n \times m} \\
A \cdot \mathbb{1}_{n}=A & \text { for } A \in \mathbb{R}^{m \times n}
\end{array}\right\} \begin{aligned}
& \text { neutral element with respect to } \\
& \text { the matrix multiplication }
\end{aligned}
$$

Map level:

$$
\begin{aligned}
f_{\mathbb{1}_{n}}: & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \\
& x \longmapsto \underbrace{\mathbb{1}_{n}}_{\sim} x \\
& =x \\
f_{\mathbb{1}_{n}}= & \text { identity map }
\end{aligned}
$$

$f_{\mathbb{1}_{n}}-$

Inverses:

$$
\begin{gathered}
A \in \mathbb{R}^{n \times n} \leadsto \tilde{A} \in \mathbb{R}^{n \times n} \text { with } A \tilde{A}=\mathbb{1} \text { and } \tilde{A} A=\mathbb{1} \\
\text { If such a } \tilde{A} \text { exists, it's uniquely determined. Write } \tilde{A}^{-1} \text { (instead of } \tilde{A} \text {) } \\
\nsim \\
\text { inverse of } A
\end{gathered}
$$

Definition: A matrix $A \in \mathbb{R}^{n \times n}$ is called invertible ($=$ non-singular = regular)
if the corresponding linear map $f_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is bijective.
otherwise we call A singular.
A matrix $\tilde{A} \in \mathbb{R}^{n \times n}$ is called the inverse of A if $f_{\tilde{A}}=\left(f_{A}\right)^{-1}$
Write A^{-1} (instead of \tilde{A})

Summary:

$$
\begin{aligned}
& f_{A^{-1}} \circ f_{A}=\text { id } \\
& f_{A} \circ f_{A^{-1}}=\text { id }
\end{aligned} \quad \Leftrightarrow \quad \begin{aligned}
& A^{-1} A=\mathbb{1} \\
& A^{-1}=\mathbb{1}
\end{aligned}
$$

