Linear Algebra - Part 28
Dimension of U : number of elements in a basis of $U=\operatorname{dim}(U)$
Theorem: $\quad U, V \subseteq \mathbb{R}^{n}$ linear subspaces

(a) $\quad \operatorname{dim}(U)=\operatorname{dim}(V) \Longleftrightarrow$ there is a bijective linear map $f: U \rightarrow V$

(b) $U \subseteq V$ and $\operatorname{dim}(U)=\operatorname{dim}(V) \Rightarrow U=V$

Proof: (a) (\Rightarrow) we assume $\operatorname{dim}(U)=\operatorname{dim}(V)$.

For $x \in U: f(x)=f\left(\lambda_{1} u^{(1)}+\lambda_{2} u^{(2)}+\cdots+\lambda_{k} u^{(k)}\right) \begin{gathered}\text { uniquely } \\ \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}\end{gathered}$

$$
\begin{aligned}
& =\lambda_{1} \cdot f\left(u^{(1)}\right)+\lambda_{2} \cdot f\left(u^{(2)}\right)+\cdots+\lambda_{k} \cdot f\left(u^{(k)}\right) \\
& =\lambda_{1} \cdot v^{(1)}+\cdots+\lambda_{k} \cdot v^{(k)}=: f(x)
\end{aligned}
$$

Now define: $f^{-1}: V \rightarrow U, f^{-1}\left(v^{(i)}\right)=u^{(i)}$
Then: $\left(f^{-1} \circ f\right)(x)=x$ and $\left(f \circ f^{-1}\right)(y)=y \Rightarrow \begin{gathered}f \text { is } \\ \text { bijectivetlinear }\end{gathered}$ (\Leftarrow) We assume that there is bijective linear map $f: U \rightarrow V$.
injective+surjective
Let $B=\left(u^{(1)}, u^{(2)}, \ldots, u^{(k)}\right)$ be a basis of u
$\Rightarrow\left(f\left(u^{(1)}\right), f\left(u^{(2)}\right), \ldots, f\left(u^{(k)}\right)\right)$ basis in V ?
\downarrow finjective
linearly independent

$$
\Rightarrow \operatorname{dim}(u)=\operatorname{dim}(V)
$$

(b) We show: $\quad U \subseteq V$ and $\operatorname{dim}(U)=\operatorname{dim}(V) \Rightarrow U=V$

$$
\begin{array}{r}
\left(u^{(1)}, u^{(2)}, \ldots, u^{(k)}\right) \text { basis of } u \Rightarrow\left(u^{(1)}, u^{(2)}, \ldots, u^{(k)}\right) \text { basis of } V \\
v=\lambda_{1} u^{(1)}+\lambda_{2} u^{(2)}+\cdots+\lambda_{k} u^{(k)} \\
\Rightarrow U=V \quad \in U
\end{array}
$$

