BECOME A MEMBER

ON STEADY

The Bright Side of Mathematics

Steinitz Exchange Lemma: $(V^{(1)}, V^{(2)}, ..., V^{(k)})$ basis of U $(a^{(1)}, a^{(2)}, ..., a^{(l)})$ lin. independent vectors in U \Rightarrow new basis of V

<u>Fact</u>: Let $U \subseteq \mathbb{R}^n$ be a subspace and $\mathbb{B} = (V^{(1)}, V^{(2)}, \dots, V^{(k)})$ be a basis of U. Then: (a) Each family $(w^{(1)}, w^{(2)}, ..., w^{(m)})$ with m > k vectors in Uis linearly dependent.

(b) Each basis of U has exactly k elements.

Let $\mathcal{U} \subseteq \mathbb{R}^n$ be a subspace and \mathfrak{B} be a basis of \mathcal{V} . Definition: The number of vectors in $\mathbb B$ is called the dimension of $\mathbb N$. dim(U) integer We write: set: $\dim(\{0\}) := 0$ (span(\emptyset) = $\{0\}$) basis Example:

$$\dim(\mathbb{R}^n) = n$$

