Linear Algebra - Part 27

Steinitz Exchange Lemma: $\left(V^{(1)}, V^{(2)}, \ldots, V^{(k)}\right)$ basis of U
$\left(a^{(1)}, a^{(2)}, \ldots, a^{(l)}\right)$ lin. independent vectors in U
\Rightarrow new basis of U
Fact: Let $U \subseteq \mathbb{R}^{n}$ be a subspace and $B=\left(V^{(1)}, V^{(2)}, \ldots, V^{(k)}\right)$ be a basis of U. Then: (a) Each family $\left(w^{(1)}, w^{(2)}, \ldots, w^{(m)}\right)$ with $m>k$ vectors in U
is linearly dependent.
(b) Each basis of U has exactly k elements.

Definition: Let $U \subseteq \mathbb{R}^{n}$ be a subspace and B be a basis of U.
The number of vectors in B is called the dimension of U.
We write: $\quad \operatorname{dim}(U)<$ integer
set: $\operatorname{dim}(\{0\}):=0 \quad\left(\begin{array}{c}\operatorname{span}(\phi)=\{0\}\end{array}\right)$
Example:
$\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ standard basis of \mathbb{R}^{n}

$$
\operatorname{dim}\left(\mathbb{R}^{n}\right)=n
$$

