Linear Algebra - Part 26

dimension $=2$

dimension $=1$

Steinitz Exchange Lemma
Let $U \subseteq \mathbb{R}^{n}$ be a subspace and

$B=\left(v^{(1)}, v^{(2)}, \ldots, v^{(k)}\right)$ be a basis of U.
$A=\left(a^{(1)}, a^{(2)}, \ldots, a^{(l)}\right)$ linearly independent vectors in U.

Then: One can add $k-l$ vectors from B to the family A such that we get a new basis of U.

```
Proof: l=1: B\cupA = ( }\mp@subsup{V}{}{(1)},\mp@subsup{V}{}{(2)},\ldots,\mp@subsup{V}{}{(k)},\mp@subsup{a}{}{(1)})\mathrm{ is linearly dependent
because }B\mathrm{ is a basis: there are uniquely given }\mp@subsup{\lambda}{1}{},\ldots,\mp@subsup{\lambda}{k}{}\in\mathbb{R}\mathrm{ :
```

(*)

$$
a^{(1)}=\lambda_{1} v^{(1)}+\cdots+\lambda_{k} v^{(k)}
$$

$$
\xrightarrow{\longrightarrow}
$$

Choose $\lambda_{j} \neq 0$

$$
v^{(j)}=\frac{1}{-\lambda_{j}}\left(\lambda_{1} v^{(1)}+\cdots+\lambda_{j-1} v^{(-1)}+\lambda_{j+1} v^{(j+1)}+\cdots+\lambda_{k} v^{(k)}-a^{(1)}\right)
$$

Remove $V^{(j)}$ from $B u$ d and call it e.
e is linearly independent:
e spans $U: u \in U \stackrel{B}{\Rightarrow}$ basis there are coefficients

$$
\begin{aligned}
& u=\mu_{1} v^{(1)}+\cdots+\mu_{j-1} v^{(j-1)}+\mu_{j} v^{(j)}+\mu_{j+1} v^{(j+1)}+\cdots+\mu_{k} v^{(k)} \\
& =\tilde{\mu}_{1} v^{(1)}+\cdots+\tilde{\mu}_{j-1} v^{(j-1)}+\tilde{\mu}_{j} a^{(1)}+\tilde{\mu}_{j+1}\left(v^{(j+1)}+\cdots+\tilde{\mu}_{k} v^{(k)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{\lambda}_{1} v^{(1)}+\cdots+\tilde{\lambda}_{j-1} v^{(j-1)}+\tilde{\lambda}_{j} a^{(1)}+\tilde{\lambda}_{j+1} v^{(j+1)}+\cdots+\tilde{\lambda}_{k} v^{(k)}=0 \\
& \text { Assume } \tilde{\lambda}_{j} \neq 0: \quad a^{(1)}=\text { linear combination with } v^{(1)}, \ldots, v^{(j-1)}, v^{(j+1)}, \ldots, v^{(k)} \\
& \text { Hence: } \tilde{\lambda}_{j}=0 \Rightarrow \quad \xi(*) \\
& \widetilde{\lambda}_{1} v^{(k)}+\cdots+\widetilde{\lambda}_{j-1} v^{(j-1)}+\widetilde{\lambda}_{j+1} v^{(k+1)}+\cdots+\widetilde{\lambda}_{k} v^{(k)}=0 \\
& \stackrel{\text { lin indeerendenene }}{\Rightarrow} \widetilde{\lambda}_{i}=0 \text { for } i \in\{1, \ldots, k\}
\end{aligned}
$$

