Linear Algebra - Part 25
basis of a subspace: spans the subspace + linearly independent

 coordinates of V : $\binom{1}{1}$
coordinates: $U \subseteq \mathbb{R}^{n}$ subspace, $B=\left(v^{(1)}, v^{(1)}, \ldots, v^{(k)}\right)$ basis of U
\Rightarrow Each vector $u \in U$ can be written as a linear combination:

$$
u=\lambda_{1} v^{(1)}+\lambda_{2} v^{(2)}+\cdots+\lambda_{k} v^{(k)} \quad, \lambda_{j} \in \mathbb{R}
$$

$$
\uparrow \uparrow_{\text {coordinates of } u \text { with respect to } B}
$$

$$
u=\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{k}
\end{array}\right)_{B}
$$

Example: $\mathbb{R}^{3}=\operatorname{span}(\underbrace{\mathbb{R}^{3}}_{\text {basis of }}\left(\begin{array}{c}-3 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right))$

$$
\begin{aligned}
& u=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=1 \cdot\left(\begin{array}{c}
-3 \\
0 \\
0
\end{array}\right)+2 \cdot\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+1 \cdot\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right) \\
& \tilde{u}=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)=-1 \cdot\left(\begin{array}{c}
-3 \\
0 \\
0
\end{array}\right)+0 \cdot\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+0 \cdot\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

