Linear Algebra - Part 23
$\left(V^{(1)}, V^{(2)}, \ldots, V^{(k)}\right)$ linearly independent if

$$
\sum_{j=1}^{k} \lambda_{j} v^{(j)}=0 \quad \Rightarrow \quad \lambda_{1}=\lambda_{2}=\lambda_{3}=\cdots=0
$$

Examples: (a) $\left(v^{(1)}\right)$ linearly independent if $v^{(1)} \neq 0$
(b) $\left(0, V^{(2)}, \ldots, V^{(k)}\right)$ linearly dependent

$$
\left(\lambda_{1}=1 \quad, \lambda_{2}=\lambda_{3}=\cdots=0\right)
$$

(c) $\left(\binom{1}{0},\binom{1}{1},\binom{0}{1}\right)$ linearly dependent

$$
\binom{1}{1}-\binom{0}{1}-\binom{1}{0}=0
$$

(d)
$\left(e_{1}, e_{2}, \ldots, e_{n}\right), e_{i} \in \mathbb{R}^{n}$ canonical unit vectors linearly independent

$$
\sum_{j=1}^{n} \lambda_{j} e_{j}=0 \Leftrightarrow\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) \Leftrightarrow \lambda_{1}=\lambda_{2}=\lambda_{3}=\cdots=0
$$

(e)

$$
\begin{gathered}
\left(e_{1}, e_{2}, \ldots, e_{n}, v\right), e_{i}, V \in \mathbb{R}^{n} \\
\text { linearly dependent }
\end{gathered}
$$

Fact: $\left(V^{(1)}, V^{(2)}, \ldots, V^{(k)}\right)$ family of vectors $v^{(j)} \in \mathbb{R}^{n}$
linearly dependent
\Leftrightarrow There is l with

$$
\operatorname{span}\left(v^{(1)}, v^{(2)}, \ldots, v^{(k)}\right)=\operatorname{span}\left(v^{(1)}, \ldots, v^{(l-1)}, v^{(l+1)}, \ldots, v^{(k)}\right)
$$

