Linear Algebra - Part 22

Definition: Let $V^{(1)}, V^{(2)}, \ldots, V^{(k)} \in \mathbb{R}^{n}$. The family $\left(V^{(1)}, V^{(2)}, \ldots, V^{(k)}\right)\left(\right.$ or $\left.\left\{v^{(1)}, v^{(2)}, \ldots, v^{(k)}\right\}\right)$ is called linearly dependent if there are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in \mathbb{R}$
that are not all equal to zero such that:

$$
\sum_{j=1}^{k} \lambda_{j} v^{(j)}=0 \mathbb{C}^{\text {zero vector in } \mathbb{R}^{n}}
$$

We call the family linearly independent if

$$
\sum_{j=1}^{k} \lambda_{j} v^{(j)}=0 \Rightarrow \lambda_{1}=\lambda_{2}=\lambda_{3}=\cdots=0
$$

