Linear Algebra - Part 20

$$
\begin{aligned}
& \text { Linear map: } f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, x \mapsto f(x)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
f(x)=f\left(x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}\right) \\
\begin{array}{l}
\text { Inreant } \\
=
\end{array} x_{1} f\left(e_{1}\right)+x_{2} f\left(e_{2}\right)+\cdots+x_{n} f\left(e_{n}\right)
\end{array}\right\} \Rightarrow \begin{array}{l}
\text { to know } f(x), \\
\text { it's sufficient to know } \\
f\left(e_{1}\right), \ldots, f\left(e_{n}\right)
\end{array}
\end{aligned}
$$

Proposition: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ linear.
Then there is exactly one matrix $A \in \mathbb{R}^{n \times n}$ with $f=f_{A}$ $(f(x)=A x)$
and

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
f\left(e_{1}\right) & f\left(e_{2}\right) & \cdots & f\left(e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right) .
$$

Proof: $\quad f_{A}(x)=f_{A}\left(\left(\begin{array}{l}x_{1} \\ x_{n} \\ x_{n}\end{array}\right)\right)=A\left(\begin{array}{l}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$

$$
\begin{aligned}
=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
f\left(e_{1}\right) f\left(e_{2}\right) & \cdots & f\left(e_{e}\right) \\
\mid & \mid & \mid
\end{array}\right)\binom{x_{x_{1}}}{x_{n}} & =x_{1}\left(\begin{array}{c}
\mid \\
f\left(e_{e}\right) \\
\mid
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
\mid \\
f\left(e_{n}\right) \\
\mid
\end{array}\right) \\
& =f(x)
\end{aligned}
$$

Uniqueness: Assume there are $A, B \in \mathbb{R}^{n \times n}$ with $f=f_{A}$ and $f=f_{B}$
$\Rightarrow A x=B x$ for all $x \in \mathbb{R}^{n}$
$\Rightarrow(A-B) x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ for all $x \in \mathbb{R}^{n}$
$\stackrel{\text { Use } e_{i}}{\Rightarrow} A-B=\left(\begin{array}{ccc}0 & \cdots & 0 \\ \vdots & \cdots & \ddots \\ 0 & \cdots & 0\end{array}\right) \Rightarrow A=B$

