## Linear Algebra - Part 19

$$
\begin{aligned}
A \in \mathbb{R}^{m \times n} \leadsto f_{A}: & \mathbb{R}^{n} \\
& \longrightarrow \mathbb{R}^{m} \\
& \mapsto A_{x}
\end{aligned}
$$

Proposition: $f_{A}$ is a linear map:

> (1) $\quad f_{A}(x+y)=f_{A}(x)+f_{A}(y), \quad A(x+y)=A x+A_{y} \quad$ (distributive)
> (2) $f_{A}(\lambda \cdot x)=\lambda \cdot f_{A}(x) \quad, \quad A(\lambda \cdot x)=\lambda \cdot\left(A_{x}\right) \quad$ (compatible)

Example:

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 1 \\
a_{1} & a_{2} \\
1 & 1
\end{array}\right)\left(\binom{x_{1}}{x_{2}}+\binom{y_{1}}{y_{2}}\right) & =\left(\begin{array}{cc}
1 & 1 \\
a_{1} & a_{2} \\
1 & 1
\end{array}\right)\binom{x_{1}+y_{1}}{x_{2}+y_{2}} \\
& =\left(\begin{array}{l}
1 \\
a_{1} \\
1
\end{array}\right)\left(x_{1}+y_{1}\right)+\left(\begin{array}{c}
1 \\
a_{2} \\
1
\end{array}\right)\left(x_{2}+y_{2}\right) \\
& =\left(\begin{array}{c}
1 \\
a_{1} \\
1
\end{array}\right) x_{1}+\left(\begin{array}{c}
1 \\
a_{2} \\
1
\end{array}\right) x_{2}+\left(\begin{array}{l}
1 \\
a_{1} \\
1
\end{array}\right) y_{1}+\left(\begin{array}{c}
1 \\
a_{2} \\
1
\end{array}\right) y_{2} \\
& =\left(\begin{array}{cc}
1 & 1 \\
a_{1} & a_{2} \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}+\left(\begin{array}{cc}
1 & 1 \\
a_{1} & a_{2} \\
1 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}
\end{aligned}
$$

matrix $A$ (table of numbers) $\leadsto f_{A}$ abstract linear map

Now: two matrices $A, B$

$$
\begin{aligned}
& \left.\begin{array}{l}
A \in \mathbb{R}^{m \times k} \\
B \in \mathbb{R}^{k \times n}
\end{array}\right\} A B \in \mathbb{R}^{m \times n} \leftrightarrow \mathbb{R}^{n} \\
& (\underbrace{f_{A} \circ f_{B}}_{f_{A B}}(x)=f_{A}\left(f_{B}(x)\right)=f_{A}(B x)=A(B x)=(A B) x
\end{aligned}
$$

