ON STEADY

The Bright Side of Mathematics

Linear Algebra - Part 18

linear = conserves structure of a vector space For the vector space \mathbb{R}^n : vector addition + scalar multiplication λ .

<u>Definition:</u> $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is called <u>linear</u> if for all $X, y \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$:

(a)
$$f(x+y) = f(x) + f(y)$$
addition in \mathbb{R}^n addition in \mathbb{R}^m

(b)
$$f(\lambda \cdot x) = \lambda \cdot f(x)$$

Example: (1) $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x) = x linear

(2)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = x^{1}$ not linear because $f(3.1) = 9$
 $3 \cdot f(1) = 3$

(3)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = x + 1$ not linear because
$$f(0.1) = 1$$
$$0. f(1) = 0$$