Linear Algebra - Part 17

matrix product: $\quad \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times k} \longrightarrow \mathbb{R}^{m \times k}$

$$
(A, B) \longmapsto A B
$$

defined by: $\quad(A B)_{i j}=\sum_{l=1}^{n} a_{i l} b_{l j}$

Properties:

$$
\text { (a) } \begin{aligned}
(A+B) C & =A C+B C \\
D(A+B) & =D A+D B
\end{aligned}
$$

(b) $\lambda \cdot(A B)=(\lambda \cdot A) B=A(\lambda \cdot B)$
(c) $(A B) C=A(B C)$

Proof:

$$
\begin{aligned}
(c) & \begin{aligned}
(A B) C)_{i j} & =\sum_{l=1}^{n}(A B)_{i l} C_{l j} \\
& =\sum_{l}\left(\sum_{z} a_{i z b l} b_{z}\right) C_{l j} \\
& =\sum_{z} a_{i z} \sum_{l} b_{z l} C_{l j}=\sum_{z} a_{i z}(B C)_{z j} \\
& =(A(B C))_{i j}
\end{aligned}, l
\end{aligned}
$$

Important:

> no commutative law (in general)

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right)
\end{aligned}
$$

