Linear Algebra - Part 16

matrix \cdot matrix $=$ matrix \quad (matrix product)

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{n} \leadsto A b \in \mathbb{R}^{m} \\
& A \in \mathbb{R}^{m \times n}, b_{1}, \ldots, b_{k} \in \mathbb{R}^{n} \leadsto A b_{1}, A b_{2}, \ldots, A b_{k} \in \mathbb{R}^{m}
\end{aligned}
$$

Definition: for $A \in \mathbb{R}^{m x n}, B \in \mathbb{R}^{n x k}$, define the matrix product $A B$:

$$
A B=\left(\begin{array}{c}
-\alpha_{1}^{\top} \\
-\alpha_{2}^{\top} \\
\vdots \\
-\alpha_{m}^{\top}
\end{array}\right)\left(\begin{array}{ccccc}
\mid & \mid & & \mid \\
b_{1} & b_{2} & \cdots & b_{k} \\
\mid & \mid & & \left.\right|^{k}
\end{array}\right)=\left(\begin{array}{cccc}
\alpha_{1}^{\top} b_{1} & \alpha_{1}^{\top} b_{2} & \cdots & \alpha_{1}^{\top} b_{k} \\
\alpha_{2}^{\top} b_{1} & \alpha_{2}^{\top} b_{2} & \cdots & \alpha_{2}^{\top} b_{k} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{m}^{\top} b_{1} & \alpha_{m}^{\top} b_{2} & \cdots & \alpha_{m}^{\top} b_{k}
\end{array}\right)
$$

Example:

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \\
& \begin{array}{cc}
4 & 5 \\
10 & 11
\end{array}
\end{aligned}
$$

$$
\Rightarrow A B=\left(\begin{array}{cc}
4 & 5 \\
10 & 11
\end{array}\right)
$$

