Linear Algebra - Part
$A \in \mathbb{R}^{m \times n} \longleftarrow$ collection of m row vectors

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{c}
-\alpha_{1}^{\top}- \\
-\alpha_{2}^{\top}- \\
\vdots \\
-\alpha_{m}^{\top}-
\end{array}\right) \\
\alpha_{i}^{\top}:=\left(\begin{array}{llll}
a_{i 1} & a_{i 2} & \cdots & a_{i n}
\end{array}\right) \\
\uparrow \begin{array}{l}
\top \text { stands for "transpose" }
\end{array}
\end{gathered}
$$

$$
\mathbb{R}^{\text {flat matrix }} \rightarrow u^{\top}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)^{\top}=\left(\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right) \quad \begin{gathered}
\text { transpose of column vector } \\
\text { row vector }
\end{gathered}
$$

$u^{\top} x$ for $x \in \mathbb{R}^{n}$ is defined.
Example: $\quad\left(\begin{array}{lll}1 & 3 & 5\end{array}\right)\left(\begin{array}{l}2 \\ 4 \\ 6\end{array}\right)=1 \cdot 2+3.4+5 \cdot 6=\left\langle\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right),\left(\begin{array}{l}2 \\ 4 \\ 6\end{array}\right)\right\rangle$

Remember: For $u, v \in \mathbb{R}^{n}: u^{\top} v=\langle u, v\rangle$

Row picture of the matrix-vector multiplication:

$$
A x=\left(\begin{array}{c}
-\alpha_{1}^{\top}- \\
-\alpha_{2}^{\top}- \\
\vdots \\
-\alpha_{m}^{\top}-
\end{array}\right)\left(\begin{array}{c}
\mid \\
x \\
\mid
\end{array}\right)_{\mathbb{R}^{n}}=\left(\begin{array}{c}
\alpha_{1}^{\top} x \\
\alpha_{2}^{\top} x \\
\vdots \\
\alpha_{m}^{\top} x
\end{array}\right) \in \mathbb{R}^{m}
$$

Example:

$$
\left(\begin{array}{lll}
2 & 1 & 2 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)=\binom{2 \cdot 3+1 \cdot 1+2 \cdot 0}{3 \cdot 3+2 \cdot 1+1 \cdot 0}=\binom{7}{11}
$$

