Linear Algebra - Part 12

Example: Xavier is two years older than Yasmin.
Together they are 40 years old.

> How old is Xavier?
> How old is Yasmin?
$x=y+2$
$x+y=40 \longleftarrow$ two unknowns and two equations

Another Example:

$$
\left.\begin{array}{rl}
2 x_{1}-3 x_{2}+4 x_{3} & =-7 \\
-3 x_{1}+x_{2}-x_{3} & =0 \\
20 x_{1}+10 x_{2} & =80 \\
10 x_{2}+25 x_{3} & =90
\end{array}\right\} 4 \text { equations and } 3 \text { unknowns } x_{1}, x_{2}, x_{3}
$$

Linear equation: constant. $X_{1}+$ constant $\cdot X_{2}+\ldots+$ constant $\cdot X_{n}=$ constant

Definition: System of linear equations (LES) with m equations and n unknowns:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots
\end{gathered}
$$

A solution of the LES: choice of values for X_{1}, \ldots, X_{n} such that all m equations are satisfied.

Note: - it's possible that there is no solution $m=2, n=2$

- it's possible that there is a unique solution $m=2, n=2$

- it's possible that there are infinitely many solutions

Short notation: Instead of $a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}$ $a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}$
$a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}$
we write
$A x=b$
with $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right), \quad b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right)$
and $x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$
Example:

$$
\begin{aligned}
2 x_{1}-3 x_{2}+4 x_{3} & =-7 \\
-3 x_{1}+x_{2}-x_{3} & =0 \\
20 x_{1}+10 x_{2} & =80 \\
10 x_{2}+25 x_{3} & =90
\end{aligned} \quad \text { can be written as }\left(\begin{array}{ccc}
2 & -3 & 4 \\
-3 & 1 & -1 \\
20 & 10 & 0 \\
0 & 10 & 25
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-7 \\
0 \\
80 \\
90
\end{array}\right)
$$

matrix-vector product

