Linear Algebra - Part 10

$$
\begin{aligned}
& \frac{\text { Cross product/ vector product }}{L_{\text {only }} \mathbb{R}^{3}} \\
& \text { map } x: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
\end{aligned}
$$

Definition:
For $u=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{1}\end{array}\right), v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right) \in \mathbb{R}^{3}$, we define the cross product:

$$
u \times v=\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) \times\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
u_{2} v_{2}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right)
$$

With Levi-Civita symbol: $u \times v=\sum_{i, j, j k=1}^{3} \varepsilon_{i j k} u_{i} v_{j} e_{k}$

Properties:
(1) orthogonality: $U \times V$ orthogonal to U
$U \times V$ orthogonal (with respect to the standard inner product)

(2) orientation: right-hand rule

(3) length: $\|u \times v\|=$ area of the parallelogram

Example:

$$
\begin{aligned}
& u=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right), v=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad v i\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1.0-0.1 \\
0.0-2.0 \\
2.1-1.0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right)
\end{aligned}
$$

