BECOME A MEMBER

ON STEADY

The Bright Side of Mathematics

Linear Algebra - Part 9

inner product and norm in \mathbb{R}^{n} ?

L> give more structure to the vector space

 \rightarrow we can do geometry (measure angles and lengths)

<u>Definition</u>: For $u, V \in \mathbb{R}^{n}$, we define: $\langle u, v \rangle := u_{1}V_{1} + u_{2}V_{2} + \dots + u_{n}V_{n} = \sum_{i=1}^{n} u_{i}V_{i}$ (standard) <u>inner product</u> If $\langle u, v \rangle = 0$, we say that u, V are <u>orthogonal</u>.

<u>Properties:</u> The map $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ has the following properties:

(1)
$$\langle u, u \rangle \ge 0$$
 for all $u \in \mathbb{R}^n$ (positive definite)
 $\langle u, u \rangle = 0$ $\langle \Longrightarrow u = 0$

(2)
$$\langle u, v \rangle = \langle v, u \rangle$$
 for all $u, v \in \mathbb{R}^n$ (symmetric)

(3)
$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$
 (linear in the

$$\langle u, \lambda \cdot v \rangle = \lambda \cdot \langle u, v \rangle$$

(linear in the 2nd argument)

for all
$$u, v, w \in \mathbb{R}^n$$
 and $\lambda \in \mathbb{R}$

<u>Definition</u>: For $u \in \mathbb{R}^n$, we define: $\|u\| := \sqrt{\langle u, u \rangle} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$ (standard) norm

Example:

$$u = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^{4} , \quad v = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 0 \end{pmatrix} \in \mathbb{R}^{4} , \quad \langle u, v \rangle = 0$$
$$\|u\| = \sqrt{1^{2} + 1^{2}} = \sqrt{2^{2}} , \quad \|v\| = \sqrt{2^{2}} = 2$$