Linear Algebra - Part 9

inner product and norm in \mathbb{R}^{n} ?
\longrightarrow give more structure to the vector space
\rightarrow we can do geometry (measure angles and lengths)

Definition: For $u, v \in \mathbb{R}^{n}$, we define:

$$
\langle u, v\rangle:=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=\sum_{i=1}^{n} u_{i} v_{i} \text { (standard) inner product }
$$

If $\langle u, v\rangle=0$, we say that u, v are orthogonal.

Properties: The map $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ has the following properties:
$\left.\begin{array}{rl}\text { (1) } \quad\langle u, u\rangle \geq 0 & \text { for all } u \in \mathbb{R}^{n} \\ \langle u, u\rangle & =0 \quad \Leftrightarrow u=0\end{array}\right\} \quad$ (positive definite)
(2) $\langle u, v\rangle=\langle v, u\rangle$ for all $u, v \in \mathbb{R}^{n}$ (symmetric)
(3) $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$

$$
\langle u, \lambda \cdot v\rangle=\lambda \cdot\langle u, v\rangle \quad \text { 2nd argument) }
$$

for all $u, v, w \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$
Definition: For $u \in \mathbb{R}^{n}$, we define:

Euclidean

$$
\|u\|:=\sqrt{\langle u, u\rangle}=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}
$$

(standard) norm

Example:

$$
\begin{gathered}
u=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \in \mathbb{R}^{4}, \quad v=\left(\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right) \in \mathbb{R}^{4}, \quad\langle u, v\rangle=0 \\
\|u\|=\sqrt{1^{2}+1^{2}}=\sqrt{2}, \quad\|v\|=\sqrt{2^{2}}=\underline{2}
\end{gathered}
$$

