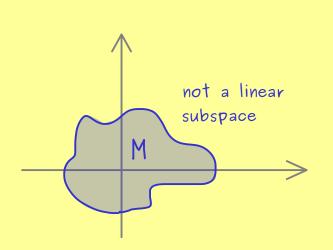
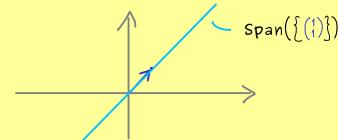

ON STEADY


The Bright Side of Mathematics

Linear Algebra - Part 8

linear span/ linear hull/ span



 $Span(M) = \begin{cases} & \text{linear subspace} \\ & \text{contains all linear combinations of vectors from } M \\ & \text{smallest subspace with this property} \end{cases}$

Definition: $M \subseteq \mathbb{R}^n$ non-empty

$$\begin{aligned} & \text{Span}(\texttt{M}) := \left\{ \textbf{u} \in \mathbb{R}^{\textbf{n}} \mid \text{ there are } \lambda_{\textbf{j}} \in \mathbb{R} \text{ and } \textbf{u}^{(\textbf{j})} \in \texttt{M} \text{ with: } \textbf{u} = \sum_{\textbf{j}=1}^{\textbf{k}} \lambda_{\textbf{j}} \textbf{u}^{(\textbf{j})} \right\} \\ & \text{Span}(\phi) := \left\{ \textbf{0} \right\} \end{aligned}$$

Example: (a) $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \subseteq \mathbb{R}^2$

 $\begin{aligned} & \operatorname{Span}(\left\{\begin{pmatrix} \{1\} \}\right\}) := \left\{ u \in \mathbb{R}^n \mid \text{ there is } \lambda \in \mathbb{R} \text{ such that } u = \lambda \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \\ & \operatorname{Span}(\begin{pmatrix} 1 \\ 1 \end{pmatrix}) \end{aligned} = \left\{ \lambda \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mid \lambda \in \mathbb{R} \right\} = \mathbb{R} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{aligned}$

(b) $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \subseteq \mathbb{R}^3$ $\operatorname{Span} \left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right) = \left\{ \begin{pmatrix} X \\ Y \\ 0 \end{pmatrix} \mid X, Y \in \mathbb{R} \right\}$

We say: the subspace is generated by the vectors $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Example: $\mathbb{R}^{h} = \operatorname{Span}(e_{1}, e_{2}, \dots, e_{h})$