The Bright Side of Mathematics

 $\lambda u_3 = -2 \cdot (\lambda u_2)$

Linear Algebra - Part 7

Examples for subspaces: (1) $\mathcal{N} = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid X_1 = X_2 \text{ and } X_3 = -2 \times_2 \right\}$ Is this a subspace?

Checking: (a) Is the zero vector in $\sqrt{?}$

 $X = O \implies \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} X_1 = 0 = X_2 \\ X_3 = 0 = -2 \times_2 \end{pmatrix}$ $\Rightarrow o \in U \checkmark$ (b) Is *\(\)* closed under scalar multiplication?

Assume:
$$u \in U$$
, $\lambda \in \mathbb{R}$, $u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$

 $U_1 = U_2$ Then:

Do we have? $X_1 = X_1$ $X_3 = -2X_1$ which is equivalent to $\lambda u_1 = \lambda u_2$

Proof:
$$U_1 = U_2$$
 $\xrightarrow{\lambda}$ $\lambda U_4 = \lambda U_2$ \Rightarrow $\lambda U_3 = -2(\lambda U_2)$ \Rightarrow $\lambda U_4 = \lambda U_2$ \Rightarrow $\lambda U_3 = -2(\lambda U_2)$ \Rightarrow $\lambda U_4 = \lambda U_2$ \Rightarrow $\lambda U_4 = \lambda U_4$ \Rightarrow $\lambda U_4 = \lambda$

Then: $U_1 = U_2$ and $V_4 = V_2$ $V_3 = -2V_2$ What about? X := U + V , $X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} U_1 + V_1 \\ U_2 + V_2 \\ U_3 + V_4 \end{pmatrix}$

Do we have? $X_1 = X_1$ $X_3 = -2X_1$ which is equivalent to $X_3 + Y_3 = -2(X_1 + Y_2)$

 $4 = 2^2 = X_1^2 \neq X_2 = 2$ \implies not a subspace!

 $(2) \quad \mathcal{U} = \left\{ \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \in \mathbb{R}^2 \mid X_1^2 = X_2 \right\}$ Show that (b) does not hold: $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathcal{U}$, $\lambda = 2$ What about? $x := \lambda \cdot u = \begin{pmatrix} i \\ 2 \end{pmatrix} \notin \mathcal{U}$

 \implies X:= u+v $\in \mathbb{V}$ \checkmark