## Linear Algebra - Part 5



$\mathbb{R}^{n}=\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n \text { times }} \quad$ for $n \in \mathbb{N}$
write $\quad V \in \mathbb{R}^{n}$ in column form: $\quad V=\left(\begin{array}{c}V_{1} \\ V_{2} \\ \vdots \\ V_{n}\end{array}\right) \in \mathbb{R}^{n}$
addition: $u+v=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right)+\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right):=\left(\begin{array}{c}u_{1}+v_{1} \\ \vdots \\ u_{n}+v_{n}\end{array}\right)$
scalar multiplication: $\quad \lambda \cdot u=\lambda \cdot\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right):=\left(\begin{array}{c}\lambda \cdot u_{1} \\ \vdots \\ \lambda \cdot u_{n}\end{array}\right)$
$\rightarrow\left(\mathbb{R}^{n},+, \cdot\right)$ is a vector space

Properties: (a) $\left(\mathbb{R}^{n},+\right)$ is an abelian group:
(1) $u+(v+w)=(u+v)+w \quad$ (associativity of + )
(2) $V+0=V$ with $0=\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)$ (neutral element)
(3) $V+(-v)=0$ with $-V=\left(\begin{array}{c}-V_{1} \\ \vdots \\ -V_{n}\end{array}\right)$ (inverse elements)
(4) $V+W=W+V \quad$ (commutativity of + )
(b) scalar multiplication is compatible: $\cdot: \mathbb{R} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$
(5) $\lambda \cdot(\mu \cdot V)=(\lambda \cdot \mu) \cdot V$
(b) $1 \cdot v=v$
(c) distributive laws:
(7) $\lambda \cdot(v+w)=\lambda \cdot v+\lambda \cdot w$
(8) $(\lambda+\mu) \cdot v=\lambda \cdot v+\mu \cdot v$

Canonical unit vectors:

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), e_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, e_{n}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

$V=\left(\begin{array}{c}V_{1} \\ V_{2} \\ \vdots \\ V_{n}\end{array}\right) \in \mathbb{R}^{n} \quad$ can be written as a linear combination: $\quad V=\sum_{j=1}^{n} V_{j} \cdot e_{j}$

