Linear Algebra - Part 3

\mathbb{R}^{2} with two operations $(0, t)$ is a vector space.

Definition: For vectors $v^{(1)}, v^{(2)}, \ldots, v^{(k)} \in \mathbb{R}^{2}$ and scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in \mathbb{R}$, the vector $V=\sum_{j=1}^{k} \lambda_{j} V^{(j)}$ is called a linear combination.

Question: Which vectors $v \in \mathbb{R}^{2}$ are perpendicular to the vector $u=\binom{2}{1}$?

Answer: $u=\binom{u_{1}}{u_{2}}$ and $v=\binom{v_{1}}{v_{2}}$ are orthogonal

$$
\begin{aligned}
& \Leftrightarrow\binom{v_{1}}{v_{2}}=\lambda \cdot\binom{-u_{2}}{u_{1}} \text { for some } \lambda \in \mathbb{R} \\
& \Leftrightarrow u_{1} \cdot v_{1}=-\underbrace{u_{1} \lambda}_{v_{2}} u_{2} \text { and } u_{2} v_{2}=\underbrace{u_{i} \lambda \cdot u_{1}}_{-v_{1}} \text { for some } \lambda \in \mathbb{R} \\
& \Leftrightarrow u_{1} v_{1}=-v_{2} \cdot u_{2} \text { and } u_{2} v_{2}=-v_{1} \cdot u_{1} \\
& \Leftrightarrow \quad u_{1} v_{1}+u_{2} v_{2}=0 \\
& !! \\
& \\
& \langle u, v\rangle \text { (standard) inner product }
\end{aligned}
$$

\rightarrow more structure (geometry)

Definition:

$$
\text { length of } \begin{aligned}
v & =\sqrt{v_{1}^{2}+v_{2}^{2}} \\
\|v\| & =\sqrt{\langle v, v\rangle}
\end{aligned}
$$

