ON STEADY

The Bright Side of Mathematics

Linear Algebra - Part 3

with two operations $(\cdot, +)$ is a vector space.

/ > combine them: linear combination

For vectors $V^{(1)}$, $V^{(2)}$, ..., $V^{(k)} \in \mathbb{R}^2$ and scalars λ_1 , λ_2 ,..., $\lambda_k \in \mathbb{R}$, the vector $V = \sum_{j=1}^k \lambda_j V^{(j)}$ is called a <u>linear combination</u>. Definition:

Which vectors $V \in \mathbb{R}^2$ are perpendicular to the vector $u = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$? Question:

 $U = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ and $V = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$ are orthogonal

$$\iff \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \lambda \cdot \begin{pmatrix} -U_2 \\ U_4 \end{pmatrix} \quad \text{for some } \lambda \in \mathbb{R}$$

more structure (geometry)

Definition:

length of $V = \sqrt{V_1^2 + V_2^2}$ $||V|| := \sqrt{V_1^2 + V_2^2}$ is called the (standard) norm