The Bright Side of Mathematics

The following pages cover the whole Linear Algebra course of the Bright Side of Mathematics. Please note that the creator lives from generous supporters and would be very happy about a donation. See more here: https://tbsom.de/support

Have fun learning mathematics!

Linear Algebra - Part 1

Prerequisites: Start Learning Mathematics (logical symbols, set operations, maps...)

Linear Algebra - Part 2

Calculation rules visualised:

Definition: $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$, elements written in column form: (Cartesian product) $\binom{4}{2} \in \mathbb{R}^{2}$ $\xrightarrow{(2)}$
Scaling: $\lambda \in \mathbb{R}, V=\binom{V_{1}}{V_{2}} \in \mathbb{R}^{2}: \quad \lambda \cdot V:=\binom{\lambda V_{1}}{\lambda V_{2}}$
Addition: $V=\binom{V_{1}}{V_{2}}, W=\binom{W_{1}}{W_{2}} \in \mathbb{R}^{2}: \quad V+W:=\binom{V_{1}+W_{1}}{V_{2}+W_{2}}$
\mathbb{R}^{2} together with the two operations (\cdot, t) is called the vector space \mathbb{R}^{2}

Linear Algebra - Part 3

\mathbb{R}^{2} with two operations $(0, t)$ is a vector space.

Definition: For vectors $v^{(1)}, v^{(2)}, \ldots, v^{(k)} \in \mathbb{R}^{2}$ and scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in \mathbb{R}$, the vector $V=\sum_{j=1}^{k} \lambda_{j} V^{(j)}$ is called a linear combination.

Question: Which vectors $v \in \mathbb{R}^{2}$ are perpendicular to the vector $u=\binom{2}{1}$?

Answer: $u=\binom{u_{1}}{u_{2}}$ and $v=\binom{v_{1}}{v_{2}}$ are orthogonal

$$
\begin{aligned}
& \Leftrightarrow\binom{v_{1}}{v_{2}}=\lambda \cdot\binom{-u_{2}}{u_{1}} \text { for some } \lambda \in \mathbb{R} \\
& \Leftrightarrow u_{1} \cdot v_{1}=-\underbrace{u_{1} \lambda}_{v_{2}} u_{2} \text { and } u_{2} v_{2}=\underbrace{u_{i} \lambda \cdot u_{1}}_{-v_{1}} \text { for some } \lambda \in \mathbb{R} \\
& \Leftrightarrow u_{1} v_{1}=-v_{2} \cdot u_{2} \text { and } u_{2} v_{2}=-v_{1} \cdot u_{1} \\
& \Leftrightarrow \quad u_{1} v_{1}+u_{2} v_{2}=0 \\
& !! \\
& \\
& \langle u, v\rangle \text { (standard) inner product }
\end{aligned}
$$

\rightarrow more structure (geometry)

Definition:

$$
\text { length of } \begin{aligned}
v & =\sqrt{v_{1}^{2}+v_{2}^{2}} \\
\|v\| & =\sqrt{\langle v, v\rangle}
\end{aligned}
$$

Linear Algebra - Part 4

1st case: origin on the line L
$L=\left\{V \in \mathbb{R}^{2} \mid V=\lambda \cdot a\right.$ for $\left.\lambda \in \mathbb{R}\right\}$ normal vector
$=\left\{v \in \mathbb{R}^{2} \mid\langle n, v\rangle=0\right\}$

Example:

$$
\begin{aligned}
& \left.L=\left\{\begin{array}{l}
x \\
y
\end{array}\right) \in \mathbb{R}^{2}\left|\left\langle\begin{array}{l}
3 \\
-1
\end{array}\right),\binom{x}{y}\right\rangle=0\right\} \\
& =\left\{\left.\binom{x}{y} \in \mathbb{R}^{2} \right\rvert\, y=3 x\right\}
\end{aligned}
$$

2nd case: origin not on line L

$$
\begin{aligned}
L & =\left\{v \in \mathbb{R}^{2} \mid\langle n, v-p\rangle=0\right\} \\
& =\left\{\left.\binom{x}{y} \in \mathbb{R}^{2} \right\rvert\, n_{1} x+n_{i} \cdot y=\delta\right\}
\end{aligned}
$$

$$
\delta:=\langle n, p\rangle
$$

Example:

$$
L=\{\left.\binom{x}{y} \in \mathbb{R}^{2} \right\rvert\, \underbrace{y=2 x+5}_{-2 x+y=5}\} \quad \begin{gathered}
n=\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right) \\
\delta=5
\end{gathered}
$$

Linear Algebra - Part 5

$\mathbb{R}^{n}=\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n \text { times }} \quad$ for $n \in \mathbb{N}$
write $\quad V \in \mathbb{R}^{n}$ in column form: $\quad V=\left(\begin{array}{c}V_{1} \\ V_{2} \\ \vdots \\ V_{n}\end{array}\right) \in \mathbb{R}^{n}$
addition: $u+v=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right)+\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right):=\left(\begin{array}{c}u_{1}+v_{1} \\ \vdots \\ u_{n}+v_{n}\end{array}\right)$
scalar multiplication: $\quad \lambda \cdot u=\lambda \cdot\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right):=\left(\begin{array}{c}\lambda \cdot u_{1} \\ \vdots \\ \lambda \cdot u_{n}\end{array}\right)$
$\rightarrow\left(\mathbb{R}^{n},+, \cdot\right)$ is a vector space

Properties: (a) $\left(\mathbb{R}^{n},+\right)$ is an abelian group:
(1) $u+(v+w)=(u+v)+w \quad$ (associativity of +)
(2) $V+0=V$ with $0=\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)$ (neutral element)
(3) $V+(-v)=0$ with $-V=\left(\begin{array}{c}-V_{1} \\ \vdots \\ -V_{n}\end{array}\right)$ (inverse elements)
(4) $V+W=W+V \quad$ (commutativity of +)
(b) scalar multiplication is compatible: $\cdot: \mathbb{R} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$
(5) $\lambda \cdot(\mu \cdot V)=(\lambda \cdot \mu) \cdot V$
(b) $1 \cdot v=v$
(c) distributive laws:
(7) $\lambda \cdot(v+w)=\lambda \cdot v+\lambda \cdot w$
(8) $(\lambda+\mu) \cdot v=\lambda \cdot v+\mu \cdot v$

Canonical unit vectors:

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), e_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, e_{n}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

$V=\left(\begin{array}{c}V_{1} \\ V_{2} \\ \vdots \\ V_{n}\end{array}\right) \in \mathbb{R}^{n} \quad$ can be written as a linear combination: $\quad V=\sum_{j=1}^{n} V_{j} \cdot e_{j}$

Linear Algebra - Part 6

(linear) subspaces:

Definition: $U \subseteq \mathbb{R}^{n}, U \neq \varnothing$, is called a (linear) subspace of \mathbb{R}^{n} if all linear combinations in U remain in U :

$$
\begin{gathered}
u^{(1)}, u^{(2)}, \ldots, u^{(k)} \in U \\
\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in \mathbb{R}
\end{gathered} \quad \Longrightarrow \quad \sum_{j=1}^{k} \lambda_{j} u^{(j)} \in U
$$

Characterisation for subspaces:

$$
U \subseteq \mathbb{R}^{n} \text { is a subspace } \Leftrightarrow \quad \begin{aligned}
& \text { (a) } 0 \in U \\
& \text { (b) } u \in U, \lambda \in \mathbb{R} \Rightarrow \lambda \cdot u \in U \\
& \text { (c) } u, v \in U \Rightarrow u+v \in U
\end{aligned}
$$

Examples: $U=\{0\}$ subspace:
$u=\mathbb{R}^{n}$
all other subspaces U satisfy: $\{0\} \subseteq U \subseteq \mathbb{R}^{n}$

$$
\begin{array}{ccc}
\text { Then } & \begin{array}{l}
u_{1}=-i_{1} \\
u_{3}=-2 u_{2}
\end{array}
\end{array}
$$

 $\Rightarrow U=\left\{\left.\binom{x_{2}}{\vdots} \in \mathbb{R}^{3} \right\rvert\, x_{1}=x_{2}, \ldots+x_{2}=-2 x_{3}\right\} \quad$ subspaoce (2) $u=\left\{\left.\binom{x_{2}}{x_{1}} \in \mathbb{R}^{2} \right\rvert\, x_{1}^{2}=x_{2}\right\}$

Linear Algebra - Part 8

linear span/ linear hull/ span

$\operatorname{span}(M) \quad \begin{aligned} & \text { linear subspace } \\ & \text { contains all linear combinations of vectors from } M \\ & \text { smallest subspace with this property }\end{aligned}$

Definition: $\quad M \subseteq \mathbb{R}^{n}$ non-empty

$$
\begin{aligned}
& \operatorname{span}(M):=\left\{u \in \mathbb{R}^{n} \mid \text { there are } \lambda_{j} \in \mathbb{R} \text { and } u^{(j)} \in M \text { with: } u=\sum_{j=1}^{k} \lambda_{j} u^{(j)}\right\} \\
& \operatorname{span}(\phi):=\{0\}
\end{aligned}
$$

Example:
(a)

$$
\left\{\binom{1}{1}\right\} \subseteq \mathbb{R}^{2}
$$

$$
\begin{aligned}
\operatorname{span}\left(\left\{\binom{1}{1}\right\}\right): & =\left\{u \in \mathbb{R}^{n} \mid \text { there is } \lambda \in \mathbb{R} \text { such that } u=\lambda \cdot\binom{1}{1}\right\} \\
\operatorname{span}\left(\binom{1}{1}\right) & =\left\{\left.\lambda \cdot\binom{1}{1} \right\rvert\, \lambda \in \mathbb{R}\right\}=\mathbb{R} \cdot\binom{1}{1}
\end{aligned}
$$

(b) $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\} \subseteq \mathbb{R}^{3}$

$$
\operatorname{span}\left(\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right)=\left\{\left.\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right) \right\rvert\, x, y \in \mathbb{R}\right\}
$$

We say: the subspace is generated by the vectors $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
Example: $\mathbb{R}^{n}=\operatorname{span}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$

Linear Algebra - Part 9

inner product and norm in \mathbb{R}^{n} ?
\longrightarrow give more structure to the vector space
\rightarrow we can do geometry (measure angles and lengths)

Definition: For $u, v \in \mathbb{R}^{n}$, we define:

$$
\langle u, v\rangle:=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=\sum_{i=1}^{n} u_{i} v_{i} \text { (standard) inner product }
$$

If $\langle u, v\rangle=0$, we say that u, v are orthogonal.

Properties: The map $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ has the following properties:
$\left.\begin{array}{rl}\text { (1) } \quad\langle u, u\rangle \geq 0 & \text { for all } u \in \mathbb{R}^{n} \\ \langle u, u\rangle & =0 \quad \Leftrightarrow u=0\end{array}\right\} \quad$ (positive definite)
(2) $\langle u, v\rangle=\langle v, u\rangle$ for all $u, v \in \mathbb{R}^{n}$ (symmetric)
(3) $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$

$$
\langle u, \lambda \cdot v\rangle=\lambda \cdot\langle u, v\rangle \quad \text { 2nd argument) }
$$

for all $u, v, w \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$
Definition: For $u \in \mathbb{R}^{n}$, we define:

Euclidean

$$
\|u\|:=\sqrt{\langle u, u\rangle}=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}
$$

(standard) norm

Example:

$$
\begin{gathered}
u=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \in \mathbb{R}^{4}, \quad v=\left(\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right) \in \mathbb{R}^{4}, \quad\langle u, v\rangle=0 \\
\|u\|=\sqrt{1^{2}+1^{2}}=\sqrt{2}, \quad\|v\|=\sqrt{2^{2}}=\underline{2}
\end{gathered}
$$

Linear Algebra - Part 10

$$
\begin{aligned}
& \frac{\text { Cross product/ vector product }}{L_{\text {only }} \mathbb{R}^{3}} \\
& \text { map } x: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
\end{aligned}
$$

Definition:
For $u=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{1}\end{array}\right), v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right) \in \mathbb{R}^{3}$, we define the cross product:

$$
u \times v=\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) \times\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
u_{2} v_{2}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right)
$$

With Levi-Civita symbol: $u \times v=\sum_{i, j, j k=1}^{3} \varepsilon_{i j k} u_{i} v_{j} e_{k}$

Properties:
(1) orthogonality: $U \times V$ orthogonal to U
$U \times V$ orthogonal (with respect to the standard inner product)

(2) orientation: right-hand rule

(3) length: $\|u \times v\|=$ area of the parallelogram

Example:

$$
\begin{aligned}
& u=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right), v=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad v i\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1.0-0.1 \\
0.0-2.0 \\
2.1-1.0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right)
\end{aligned}
$$

Linear Algebra - Part 11

Matrices \leadsto help us to solve systems of linear equations

Matrix $=$ table of numbers

$$
a_{i j} \in \mathbb{R} \underbrace{}_{\text {width }=n} \quad\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\} \text { height }=m
$$

Example: $n=3, m=2$

$$
\left(\begin{array}{lll}
4 & \pi & 1 \\
6 & \sqrt{2} & 0
\end{array}\right)
$$

Set of matrices:

$$
\xrightarrow[\substack{\text { addition } \\ \text { and } \\ \mathbb{R}^{m \times a l a r ~ m u l t i p l i c a t i o n ~}}]{\longrightarrow}
$$

Addition: $\quad A, B \in \mathbb{R}^{m \times n}$

$$
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)+\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
\vdots & & \vdots \\
b_{m 1} & \cdots & b_{m n}
\end{array}\right):=\left(\begin{array}{ccc}
a_{11}+b_{11} & \cdots & a_{1 n}+b_{1 n} \\
\vdots & & \vdots \\
a_{m 1}+b_{m 1} & \cdots & a_{m n}+b_{m n}
\end{array}\right)
$$

$$
\text { Example: }\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)+\left(\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right)=\left(\begin{array}{ll}
2 & 2 \\
5 & 3
\end{array}\right) \in \mathbb{R}^{2 \times 2}
$$

Note: $\quad\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)+\left(\begin{array}{cc}7 & 8 \\ 9 & 10\end{array}\right)$ is not defined:

Scalar multiplication: $A \in \mathbb{R}^{m \times n}, \quad \lambda \in \mathbb{R}$

$$
\begin{aligned}
& \lambda \cdot A=\lambda \cdot\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right):=\left(\begin{array}{ccc}
\lambda \cdot a_{11} & \cdots & \lambda \cdot a_{1 n} \\
\vdots & & \vdots \\
\lambda \cdot a_{m 1} & \cdots & \lambda \cdot a_{m n}
\end{array}\right) \in \mathbb{R}^{m \times n} \\
& \quad \rightarrow\left(\mathbb{R}^{m \times n},+, \cdot\right) \text { is a vector space }
\end{aligned}
$$

Properties: (a) $\left(\mathbb{R}^{m \times n},+\right)$ is an abelian group:
(1) $A+(B+C)=(A+B)+C \quad$ (associativity of +)
(2) $A+0=A$ with $0=\left(\begin{array}{ccc}0 & \cdots & 0 \\ \vdots & \cdots & 0 \\ 0 & \cdots & 0\end{array}\right) \quad$ (neutral element)
(3) $A+(-A)=0$ with $-A=\left(\begin{array}{ccc}-a_{11} & \cdots & -a_{1 n} \\ \vdots & \vdots \\ -a_{m 1} \cdots & -a_{m n}\end{array}\right)$ (inverse elements)
(4) $A+B=B+A \quad$ (commutativity of +)
(b) scalar multiplication is compatible: $:: \mathbb{R} \times \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{m \times n}$
(5) $\lambda \cdot(\mu \cdot A)=(\lambda \cdot \mu) \cdot A$
(b) $1 \cdot A=A$
(c) distributive laws:
(7) $\lambda \cdot(A+B)=\lambda \cdot A+\lambda \cdot B$
(8) $(\lambda+\mu) \cdot A=\lambda \cdot A+\mu \cdot A$

Linear Algebra - Part 12

Example: Xavier is two years older than Yasmin.
Together they are 40 years old.

> How old is Xavier?
> How old is Yasmin?
$x=y+2$
$x+y=40 \longleftarrow$ two unknowns and two equations

Another Example:

$$
\left.\begin{array}{rl}
2 x_{1}-3 x_{2}+4 x_{3} & =-7 \\
-3 x_{1}+x_{2}-x_{3} & =0 \\
20 x_{1}+10 x_{2} & =80 \\
10 x_{2}+25 x_{3} & =90
\end{array}\right\} 4 \text { equations and } 3 \text { unknowns } x_{1}, x_{2}, x_{3}
$$

Linear equation: constant. $X_{1}+$ constant $\cdot X_{2}+\ldots+$ constant $\cdot X_{n}=$ constant

Definition: System of linear equations (LES) with m equations and n unknowns:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots
\end{gathered}
$$

A solution of the LES: choice of values for X_{1}, \ldots, X_{n} such that all m equations are satisfied.

Note: - it's possible that there is no solution $m=2, n=2$

- it's possible that there is a unique solution $m=2, n=2$

- it's possible that there are infinitely many solutions

Short notation: Instead of $a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}$ $a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}$
$a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}$
we write
$A x=b$
with $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right), \quad b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right)$
and $x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$
Example:

$$
\begin{aligned}
2 x_{1}-3 x_{2}+4 x_{3} & =-7 \\
-3 x_{1}+x_{2}-x_{3} & =0 \\
20 x_{1}+10 x_{2} & =80 \\
10 x_{2}+25 x_{3} & =90
\end{aligned} \quad \text { can be written as }\left(\begin{array}{ccc}
2 & -3 & 4 \\
-3 & 1 & -1 \\
20 & 10 & 0 \\
0 & 10 & 25
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-7 \\
0 \\
80 \\
90
\end{array}\right)
$$

matrix-vector product

Linear Algebra - Part 13

Names for matrices: $A \in \mathbb{R}^{m^{x n}}$ number of rows
square matrix: $A \in \mathbb{R}^{n \times n}$ for example: $\left(\begin{array}{lll}1 & 7 & 9 \\ 2 & 8 & 2 \\ 4 & 1 & 3\end{array}\right)$
column vector: $A \in \mathbb{R}^{m \times 1}$ for example: $\binom{3}{2}$
row vector: $A \in \mathbb{R}^{1 \times n}$ for example: $\left(\begin{array}{llll}2 & 4 & 6 & 7\end{array}\right)$
scalar: $A \in \mathbb{R}^{1 \times 1}$ for example: (4)
diagonal matrix: $A \in \mathbb{R}^{m \times n}, a_{i j}=0$

$$
\text { for } i \neq j
$$

upper triangular matrix: $A \in \mathbb{R}^{n \times n}$

$$
a_{i j}=0 \quad \text { for } i>j
$$

lower triangular matrix: $A \in \mathbb{R}^{n \times n}$

$$
a_{i j}=0 \quad \text { for } i<j
$$

symmetric matrix: $\quad A \in \mathbb{R}^{n \times n}$

$$
a_{i j}=a_{j i} \text { for all } i, j
$$

skew-symmetric matrix: $A \in \mathbb{R}^{n \times n}$

$$
a_{i j}=-a_{j i} \text { for all } i, j
$$

Linear Algebra - Part 14

Column picture: $\quad A \in \mathbb{R}^{m \times n}$

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{cc}
\mid & \mid \\
a_{1} & a_{2} \\
\cdots & a_{n} \\
\mid & \mid \\
& \\
\vdots \\
a_{m i}
\end{array}\right)
$$

Matrix-vector product:

$$
A X=\left(\begin{array}{cccc}
\mid & & & \\
a_{1} & a_{2} & \cdots & a_{n} \\
\mid & & & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

$$
=x_{1} \cdot\left(\begin{array}{l}
\mid \\
a_{1} \\
\mid
\end{array}\right)+x_{2} \cdot\left(\begin{array}{l}
\mid \\
a_{2} \\
\mid
\end{array}\right)+\cdots+x_{n} \cdot\left(\begin{array}{c}
\mid \\
a_{n} \\
\mid
\end{array}\right)
$$

Definition: $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad X \longmapsto A x$

Linear Algebra - Part
$A \in \mathbb{R}^{m \times n} \longleftarrow$ collection of m row vectors

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{c}
-\alpha_{1}^{\top}- \\
-\alpha_{2}^{\top}- \\
\vdots \\
-\alpha_{m}^{\top}-
\end{array}\right) \\
\alpha_{i}^{\top}:=\left(\begin{array}{llll}
a_{i 1} & a_{i 2} & \cdots & a_{i n}
\end{array}\right) \\
\uparrow \begin{array}{l}
\top \text { stands for "transpose" }
\end{array}
\end{gathered}
$$

$$
\mathbb{R}^{\text {flat matrix }} \rightarrow u^{\top}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)^{\top}=\left(\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right) \quad \begin{gathered}
\text { transpose of column vector } \\
\text { row vector }
\end{gathered}
$$

$u^{\top} x$ for $x \in \mathbb{R}^{n}$ is defined.
Example: $\quad\left(\begin{array}{lll}1 & 3 & 5\end{array}\right)\left(\begin{array}{l}2 \\ 4 \\ 6\end{array}\right)=1 \cdot 2+3.4+5 \cdot 6=\left\langle\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right),\left(\begin{array}{l}2 \\ 4 \\ 6\end{array}\right)\right\rangle$

Remember: For $u, v \in \mathbb{R}^{n}: u^{\top} v=\langle u, v\rangle$

Row picture of the matrix-vector multiplication:

$$
A x=\left(\begin{array}{c}
-\alpha_{1}^{\top}- \\
-\alpha_{2}^{\top}- \\
\vdots \\
-\alpha_{m}^{\top}-
\end{array}\right)\left(\begin{array}{c}
\mid \\
x \\
\mid
\end{array}\right)_{\mathbb{R}^{n}}=\left(\begin{array}{c}
\alpha_{1}^{\top} x \\
\alpha_{2}^{\top} x \\
\vdots \\
\alpha_{m}^{\top} x
\end{array}\right) \in \mathbb{R}^{m}
$$

Example:

$$
\left(\begin{array}{lll}
2 & 1 & 2 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)=\binom{2 \cdot 3+1 \cdot 1+2 \cdot 0}{3 \cdot 3+2 \cdot 1+1 \cdot 0}=\binom{7}{11}
$$

Linear Algebra - Part 16

matrix \cdot matrix $=$ matrix \quad (matrix product)

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{n} \leadsto A b \in \mathbb{R}^{m} \\
& A \in \mathbb{R}^{m \times n}, b_{1}, \ldots, b_{k} \in \mathbb{R}^{n} \leadsto A b_{1}, A b_{2}, \ldots, A b_{k} \in \mathbb{R}^{m}
\end{aligned}
$$

Definition: for $A \in \mathbb{R}^{m x n}, B \in \mathbb{R}^{n x k}$, define the matrix product $A B$:

$$
A B=\left(\begin{array}{c}
-\alpha_{1}^{\top} \\
-\alpha_{2}^{\top} \\
\vdots \\
-\alpha_{m}^{\top}
\end{array}\right)\left(\begin{array}{ccccc}
\mid & \mid & & \mid \\
b_{1} & b_{2} & \cdots & b_{k} \\
\mid & \mid & & \left.\right|^{k}
\end{array}\right)=\left(\begin{array}{cccc}
\alpha_{1}^{\top} b_{1} & \alpha_{1}^{\top} b_{2} & \cdots & \alpha_{1}^{\top} b_{k} \\
\alpha_{2}^{\top} b_{1} & \alpha_{2}^{\top} b_{2} & \cdots & \alpha_{2}^{\top} b_{k} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{m}^{\top} b_{1} & \alpha_{m}^{\top} b_{2} & \cdots & \alpha_{m}^{\top} b_{k}
\end{array}\right)
$$

Example:

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \\
& \begin{array}{cc}
4 & 5 \\
10 & 11
\end{array}
\end{aligned}
$$

$$
\Rightarrow A B=\left(\begin{array}{cc}
4 & 5 \\
10 & 11
\end{array}\right)
$$

Linear Algebra - Part 17

matrix product: $\quad \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times k} \longrightarrow \mathbb{R}^{m \times k}$

$$
(A, B) \longmapsto A B
$$

defined by: $\quad(A B)_{i j}=\sum_{l=1}^{n} a_{i l} b_{l j}$

Properties:

$$
\text { (a) } \begin{aligned}
(A+B) C & =A C+B C \\
D(A+B) & =D A+D B
\end{aligned}
$$

(b) $\lambda \cdot(A B)=(\lambda \cdot A) B=A(\lambda \cdot B)$
(c) $(A B) C=A(B C)$

Proof:

$$
\begin{aligned}
(c) & \begin{aligned}
(A B) C)_{i j} & =\sum_{l=1}^{n}(A B)_{i l} C_{l j} \\
& =\sum_{l}\left(\sum_{z} a_{i z b l} b_{z}\right) C_{l j} \\
& =\sum_{z} a_{i z} \sum_{l} b_{z l} C_{l j}=\sum_{z} a_{i z}(B C)_{z j} \\
& =(A(B C))_{i j}
\end{aligned}, l
\end{aligned}
$$

Important:

> no commutative law (in general)

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right)
\end{aligned}
$$

Linear Algebra - Part 18

linear $=$ conserves structure of a vector space
For the vector space \mathbb{R}^{n} : \triangle vector addition + scalar multiplication λ.

Definition: $\quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called linear if for all $x, y \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$:
(a) $\underset{\substack{\text { addition in } \mathbb{R}^{n}}}{f(x+y)} \underset{\text { addition in } \mathbb{R}^{m}}{f(x)} \underset{\sim}{f}(y)$
(b) $f(\lambda \cdot x)=\lambda \cdot f(x)$

Example:
(1) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x \quad$ linear
(2) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$ not linear because $f(3 \cdot 1)=9$ 3. $f(1)=3^{H}$
(3) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x+1$ not linear because $f(0.1)=1$ $0 \cdot f(1)=0^{\#}$

Linear Algebra - Part 19

$$
\begin{aligned}
A \in \mathbb{R}^{m \times n} \leadsto f_{A}: & \mathbb{R}^{n} \\
& \longrightarrow \mathbb{R}^{m} \\
& \mapsto A_{x}
\end{aligned}
$$

Proposition: f_{A} is a linear map:

> (1) $\quad f_{A}(x+y)=f_{A}(x)+f_{A}(y), \quad A(x+y)=A x+A_{y} \quad$ (distributive)
> (2) $f_{A}(\lambda \cdot x)=\lambda \cdot f_{A}(x) \quad, \quad A(\lambda \cdot x)=\lambda \cdot\left(A_{x}\right) \quad$ (compatible)

Example:

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 1 \\
a_{1} & a_{2} \\
1 & 1
\end{array}\right)\left(\binom{x_{1}}{x_{2}}+\binom{y_{1}}{y_{2}}\right) & =\left(\begin{array}{cc}
1 & 1 \\
a_{1} & a_{2} \\
1 & 1
\end{array}\right)\binom{x_{1}+y_{1}}{x_{2}+y_{2}} \\
& =\left(\begin{array}{l}
1 \\
a_{1} \\
1
\end{array}\right)\left(x_{1}+y_{1}\right)+\left(\begin{array}{c}
1 \\
a_{2} \\
1
\end{array}\right)\left(x_{2}+y_{2}\right) \\
& =\left(\begin{array}{c}
1 \\
a_{1} \\
1
\end{array}\right) x_{1}+\left(\begin{array}{c}
1 \\
a_{2} \\
1
\end{array}\right) x_{2}+\left(\begin{array}{l}
1 \\
a_{1} \\
1
\end{array}\right) y_{1}+\left(\begin{array}{c}
1 \\
a_{2} \\
1
\end{array}\right) y_{2} \\
& =\left(\begin{array}{cc}
1 & 1 \\
a_{1} & a_{2} \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}+\left(\begin{array}{cc}
1 & 1 \\
a_{1} & a_{2} \\
1 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}
\end{aligned}
$$

matrix A (table of numbers) $\leadsto f_{A}$ abstract linear map

Now: two matrices A, B

$$
\begin{aligned}
& \left.\begin{array}{l}
A \in \mathbb{R}^{m \times k} \\
B \in \mathbb{R}^{k \times n}
\end{array}\right\} A B \in \mathbb{R}^{m \times n} \leftrightarrow \mathbb{R}^{n} \\
& (\underbrace{f_{A} \circ f_{B}}_{f_{A B}}(x)=f_{A}\left(f_{B}(x)\right)=f_{A}(B x)=A(B x)=(A B) x
\end{aligned}
$$

Linear Algebra - Part 20

$$
\begin{aligned}
& \text { Linear map: } f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, x \mapsto f(x)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
f(x)=f\left(x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}\right) \\
\begin{array}{l}
\text { Inreant } \\
=
\end{array} x_{1} f\left(e_{1}\right)+x_{2} f\left(e_{2}\right)+\cdots+x_{n} f\left(e_{n}\right)
\end{array}\right\} \Rightarrow \begin{array}{l}
\text { to know } f(x), \\
\text { it's sufficient to know } \\
f\left(e_{1}\right), \ldots, f\left(e_{n}\right)
\end{array}
\end{aligned}
$$

Proposition: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ linear.
Then there is exactly one matrix $A \in \mathbb{R}^{n \times n}$ with $f=f_{A}$ $(f(x)=A x)$
and

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
f\left(e_{1}\right) & f\left(e_{2}\right) & \cdots & f\left(e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right) .
$$

Proof: $\quad f_{A}(x)=f_{A}\left(\left(\begin{array}{l}x_{1} \\ x_{n} \\ x_{n}\end{array}\right)\right)=A\left(\begin{array}{l}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$

$$
\begin{aligned}
=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
f\left(e_{1}\right) f\left(e_{2}\right) & \cdots & f\left(e_{e}\right) \\
\mid & \mid & \mid
\end{array}\right)\binom{x_{x_{1}}}{x_{n}} & =x_{1}\left(\begin{array}{c}
\mid \\
f\left(e_{e}\right) \\
\mid
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
\mid \\
f\left(e_{n}\right) \\
\mid
\end{array}\right) \\
& =f(x)
\end{aligned}
$$

Uniqueness: Assume there are $A, B \in \mathbb{R}^{n \times n}$ with $f=f_{A}$ and $f=f_{B}$
$\Rightarrow A x=B x$ for all $x \in \mathbb{R}^{n}$
$\Rightarrow(A-B) x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ for all $x \in \mathbb{R}^{n}$
$\stackrel{\text { Use } e_{i}}{\Rightarrow} A-B=\left(\begin{array}{ccc}0 & \cdots & 0 \\ \vdots & \cdots & \ddots \\ 0 & \cdots & 0\end{array}\right) \Rightarrow A=B$

Linear Algebra - Part 21

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad \text { linear }
$$

- preserves the linear structure
- linear subspaces are sent to linear subspaces

Examples: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad f(x)=\left(\begin{array}{cc}1 & 1 \\ a_{1} & a_{2} \\ 1 & 1\end{array}\right) \times$

Linear Algebra - Part 22

Definition: Let $V^{(1)}, V^{(2)}, \ldots, V^{(k)} \in \mathbb{R}^{n}$. The family $\left(V^{(1)}, V^{(2)}, \ldots, V^{(k)}\right)\left(\right.$ or $\left.\left\{v^{(1)}, v^{(2)}, \ldots, v^{(k)}\right\}\right)$ is called linearly dependent if there are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in \mathbb{R}$
that are not all equal to zero such that:

$$
\sum_{j=1}^{k} \lambda_{j} v^{(j)}=0 \mathbb{C}^{\text {zero vector in } \mathbb{R}^{n}}
$$

We call the family linearly independent if

$$
\sum_{j=1}^{k} \lambda_{j} v^{(j)}=0 \Rightarrow \lambda_{1}=\lambda_{2}=\lambda_{3}=\cdots=0
$$

Linear Algebra - Part 23
$\left(V^{(1)}, V^{(2)}, \ldots, V^{(k)}\right)$ linearly independent if

$$
\sum_{j=1}^{k} \lambda_{j} v^{(j)}=0 \quad \Rightarrow \quad \lambda_{1}=\lambda_{2}=\lambda_{3}=\cdots=0
$$

Examples: (a) $\left(v^{(1)}\right)$ linearly independent if $v^{(1)} \neq 0$
(b) $\left(0, V^{(2)}, \ldots, V^{(k)}\right)$ linearly dependent

$$
\left(\lambda_{1}=1 \quad, \lambda_{2}=\lambda_{3}=\cdots=0\right)
$$

(c) $\left(\binom{1}{0},\binom{1}{1},\binom{0}{1}\right)$ linearly dependent

$$
\binom{1}{1}-\binom{0}{1}-\binom{1}{0}=0
$$

(d)
$\left(e_{1}, e_{2}, \ldots, e_{n}\right), e_{i} \in \mathbb{R}^{n}$ canonical unit vectors linearly independent

$$
\sum_{j=1}^{n} \lambda_{j} e_{j}=0 \Leftrightarrow\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) \Leftrightarrow \lambda_{1}=\lambda_{2}=\lambda_{3}=\cdots=0
$$

(e)

$$
\begin{gathered}
\left(e_{1}, e_{2}, \ldots, e_{n}, v\right), e_{i}, V \in \mathbb{R}^{n} \\
\text { linearly dependent }
\end{gathered}
$$

Fact: $\left(V^{(1)}, V^{(2)}, \ldots, V^{(k)}\right)$ family of vectors $v^{(j)} \in \mathbb{R}^{n}$
linearly dependent
\Leftrightarrow There is l with

$$
\operatorname{span}\left(v^{(1)}, v^{(2)}, \ldots, v^{(k)}\right)=\operatorname{span}\left(v^{(1)}, \ldots, v^{(l-1)}, v^{(l+1)}, \ldots, v^{(k)}\right)
$$

Linear Algebra - Part 24
subspace:

(a) $0 \in U$
(b) $u \in U, \lambda \in \mathbb{R} \Rightarrow \lambda \cdot u \in U$
(c) $u, v \in U \Rightarrow u+v \in U$
plane: $\mathbb{R}^{2} \quad \operatorname{span}\left(v^{(1)}, v^{(2)}, v^{(3)}, v^{(4)}\right)=\mathbb{R}^{2}$

$$
\begin{aligned}
& \operatorname{span}\left(v^{(1)}, v^{(3)}\right)=\mathbb{R}^{2} \\
& \operatorname{span}\left(v^{(1)}, v^{(4)}\right)=\mathbb{R} \times\{0\} \neq \mathbb{R}^{2}
\end{aligned}
$$

Definition: $U \subseteq \mathbb{R}^{n}$ subspace, $B=\left(v^{(1)}, v^{(i)}, \ldots, v^{(k)}\right), v^{(j)} \in \mathbb{R}^{n}$.
B is called a basis of U if:
(a) $\quad U=\operatorname{span}(B)$
(b) B is linearly independent

Example:

$$
\begin{aligned}
& \mathbb{R}^{n}=\operatorname{span}(\underbrace{e_{1}, \ldots, e_{n}}_{\text {standard basis of } \mathbb{R}^{n}}) \\
& \mathbb{R}^{3}=\operatorname{span}(\underbrace{\left(\begin{array}{c}
-3 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right)}_{\text {basis of }})
\end{aligned}
$$

Linear Algebra - Part 25
basis of a subspace: spans the subspace + linearly independent

 coordinates of V : $\binom{1}{1}$
coordinates: $U \subseteq \mathbb{R}^{n}$ subspace, $B=\left(v^{(1)}, v^{(1)}, \ldots, v^{(k)}\right)$ basis of U
\Rightarrow Each vector $u \in U$ can be written as a linear combination:

$$
u=\lambda_{1} v^{(1)}+\lambda_{2} v^{(2)}+\cdots+\lambda_{k} v^{(k)} \quad, \lambda_{j} \in \mathbb{R}
$$

$$
\uparrow \uparrow_{\text {coordinates of } u \text { with respect to } B}
$$

$$
u=\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{k}
\end{array}\right)_{B}
$$

Example: $\mathbb{R}^{3}=\operatorname{span}(\underbrace{\mathbb{R}^{3}}_{\text {basis of }}\left(\begin{array}{c}-3 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right))$

$$
\begin{aligned}
& u=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=1 \cdot\left(\begin{array}{c}
-3 \\
0 \\
0
\end{array}\right)+2 \cdot\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+1 \cdot\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right) \\
& \tilde{u}=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)=-1 \cdot\left(\begin{array}{c}
-3 \\
0 \\
0
\end{array}\right)+0 \cdot\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+0 \cdot\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

Linear Algebra - Part 26

dimension $=2$

dimension $=1$

Steinitz Exchange Lemma
Let $U \subseteq \mathbb{R}^{n}$ be a subspace and

$B=\left(v^{(1)}, v^{(2)}, \ldots, v^{(k)}\right)$ be a basis of U.
$A=\left(a^{(1)}, a^{(2)}, \ldots, a^{(l)}\right)$ linearly independent vectors in U.

Then: One can add $k-l$ vectors from B to the family A such that we get a new basis of U.

```
Proof: l=1: B\cupA = ( }\mp@subsup{V}{}{(1)},\mp@subsup{V}{}{(2)},\ldots,\mp@subsup{V}{}{(k)},\mp@subsup{a}{}{(1)})\mathrm{ is linearly dependent
because }B\mathrm{ is a basis: there are uniquely given }\mp@subsup{\lambda}{1}{},\ldots,\mp@subsup{\lambda}{k}{}\in\mathbb{R}\mathrm{ :
```

(*)

$$
a^{(1)}=\lambda_{1} v^{(1)}+\cdots+\lambda_{k} v^{(k)}
$$

$$
\xrightarrow{\longrightarrow}
$$

Choose $\lambda_{j} \neq 0$

$$
v^{(j)}=\frac{1}{-\lambda_{j}}\left(\lambda_{1} v^{(1)}+\cdots+\lambda_{j-1} v^{(-1)}+\lambda_{j+1} v^{(j+1)}+\cdots+\lambda_{k} v^{(k)}-a^{(1)}\right)
$$

Remove $V^{(j)}$ from $B u$ d and call it e.
e is linearly independent:
e spans $U: u \in U \stackrel{B}{\Rightarrow}$ basis there are coefficients

$$
\begin{aligned}
& u=\mu_{1} v^{(1)}+\cdots+\mu_{j-1} v^{(j-1)}+\mu_{j} v^{(j)}+\mu_{j+1} v^{(j+1)}+\cdots+\mu_{k} v^{(k)} \\
& =\tilde{\mu}_{1} v^{(1)}+\cdots+\tilde{\mu}_{j-1} v^{(j-1)}+\tilde{\mu}_{j} a^{(1)}+\tilde{\mu}_{j+1}\left(v^{(j+1)}+\cdots+\tilde{\mu}_{k} v^{(k)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{\lambda}_{1} v^{(1)}+\cdots+\tilde{\lambda}_{j-1} v^{(j-1)}+\tilde{\lambda}_{j} a^{(1)}+\tilde{\lambda}_{j+1} v^{(j+1)}+\cdots+\tilde{\lambda}_{k} v^{(k)}=0 \\
& \text { Assume } \tilde{\lambda}_{j} \neq 0: \quad a^{(1)}=\text { linear combination with } v^{(1)}, \ldots, v^{(j-1)}, v^{(j+1)}, \ldots, v^{(k)} \\
& \text { Hence: } \tilde{\lambda}_{j}=0 \Rightarrow \quad \xi(*) \\
& \widetilde{\lambda}_{1} v^{(k)}+\cdots+\widetilde{\lambda}_{j-1} v^{(j-1)}+\widetilde{\lambda}_{j+1} v^{(k+1)}+\cdots+\widetilde{\lambda}_{k} v^{(k)}=0 \\
& \stackrel{\text { lin indeerendenene }}{\Rightarrow} \widetilde{\lambda}_{i}=0 \text { for } i \in\{1, \ldots, k\}
\end{aligned}
$$

Linear Algebra - Part 27

Steinitz Exchange Lemma: $\left(V^{(1)}, V^{(2)}, \ldots, V^{(k)}\right)$ basis of U
$\left(a^{(1)}, a^{(2)}, \ldots, a^{(l)}\right)$ lin. independent vectors in U
\Rightarrow new basis of U
Fact: Let $U \subseteq \mathbb{R}^{n}$ be a subspace and $B=\left(V^{(1)}, V^{(2)}, \ldots, V^{(k)}\right)$ be a basis of U. Then: (a) Each family $\left(w^{(1)}, w^{(2)}, \ldots, w^{(m)}\right)$ with $m>k$ vectors in U
is linearly dependent.
(b) Each basis of U has exactly k elements.

Definition: Let $U \subseteq \mathbb{R}^{n}$ be a subspace and B be a basis of U.
The number of vectors in B is called the dimension of U.
We write: $\quad \operatorname{dim}(U)<$ integer
set: $\operatorname{dim}(\{0\}):=0 \quad\left(\begin{array}{c}\operatorname{span}(\phi)=\{0\}\end{array}\right)$
Example:
$\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ standard basis of \mathbb{R}^{n}

$$
\operatorname{dim}\left(\mathbb{R}^{n}\right)=n
$$

Linear Algebra - Part 28
Dimension of U : number of elements in a basis of $U=\operatorname{dim}(U)$
Theorem: $\quad U, V \subseteq \mathbb{R}^{n}$ linear subspaces

(a) $\quad \operatorname{dim}(U)=\operatorname{dim}(V) \Longleftrightarrow$ there is a bijective linear map $f: U \rightarrow V$

(b) $U \subseteq V$ and $\operatorname{dim}(U)=\operatorname{dim}(V) \Rightarrow U=V$

Proof: (a) (\Rightarrow) we assume $\operatorname{dim}(U)=\operatorname{dim}(V)$.

For $x \in U: f(x)=f\left(\lambda_{1} u^{(1)}+\lambda_{2} u^{(2)}+\cdots+\lambda_{k} u^{(k)}\right) \begin{gathered}\text { uniquely } \\ \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}\end{gathered}$

$$
\begin{aligned}
& =\lambda_{1} \cdot f\left(u^{(1)}\right)+\lambda_{2} \cdot f\left(u^{(2)}\right)+\cdots+\lambda_{k} \cdot f\left(u^{(k)}\right) \\
& =\lambda_{1} \cdot v^{(1)}+\cdots+\lambda_{k} \cdot v^{(k)}=: f(x)
\end{aligned}
$$

Now define: $f^{-1}: V \rightarrow U, f^{-1}\left(v^{(i)}\right)=u^{(i)}$
Then: $\left(f^{-1} \circ f\right)(x)=x$ and $\left(f \circ f^{-1}\right)(y)=y \Rightarrow \begin{gathered}f \text { is } \\ \text { bijectivetlinear }\end{gathered}$ (\Leftarrow) We assume that there is bijective linear map $f: U \rightarrow V$.
injective+surjective
Let $B=\left(u^{(1)}, u^{(2)}, \ldots, u^{(k)}\right)$ be a basis of u
$\Rightarrow\left(f\left(u^{(1)}\right), f\left(u^{(2)}\right), \ldots, f\left(u^{(k)}\right)\right)$ basis in V ?
\downarrow finjective
linearly independent

$$
\Rightarrow \operatorname{dim}(u)=\operatorname{dim}(V)
$$

(b) We show: $\quad U \subseteq V$ and $\operatorname{dim}(U)=\operatorname{dim}(V) \Rightarrow U=V$

$$
\begin{array}{r}
\left(u^{(1)}, u^{(2)}, \ldots, u^{(k)}\right) \text { basis of } u \Rightarrow\left(u^{(1)}, u^{(2)}, \ldots, u^{(k)}\right) \text { basis of } V \\
v=\lambda_{1} u^{(1)}+\lambda_{2} u^{(2)}+\cdots+\lambda_{k} u^{(k)} \\
\Rightarrow U=V \quad \in U
\end{array}
$$

Linear Algebra - Part 29
 $A \in \mathbb{R}^{m \times n} \longleftrightarrow f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ linear map

Definition: Identity matrix in $\mathbb{R}^{n \times n}$:

$$
\mathbb{1}_{n}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & \vdots \\
\vdots & 0 & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right) \quad \begin{aligned}
& \text { other notations: } \\
& I_{n}, \text { id, } I d, E_{n}
\end{aligned}
$$

Properties:

$$
\left.\begin{array}{rl}
\mathbb{1}_{n} B=B & \text { for } B \in \mathbb{R}^{n \times m} \\
A \cdot \mathbb{1}_{n}=A & \text { for } A \in \mathbb{R}^{m \times n}
\end{array}\right\} \begin{aligned}
& \text { neutral element with respect to } \\
& \text { the matrix multiplication }
\end{aligned}
$$

Map level:

$$
\begin{aligned}
f_{\mathbb{1}_{n}}: & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \\
& x \longmapsto{\underset{\sim}{1}}_{\mathbb{1}_{n} x}=x \\
f_{\mathbb{1}_{n}}= & \text { identity map }
\end{aligned}
$$

$f_{\mathbb{1}_{n}}$

Inverses:

$$
\begin{aligned}
& A \in \mathbb{R}^{n \times n} \leadsto \tilde{A} \in \mathbb{R}^{n \times n} \text { with } A \tilde{A}=\mathbb{1} \text { and } \tilde{A} A=\mathbb{1} \\
& \text { If such a } \tilde{A} \text { exists, it's uniquely determined. Write } \tilde{A}^{-1} \text { (instead of } \tilde{A} \text {) } \\
& \not \uparrow \neq \begin{array}{l}
\text { inverse of } A
\end{array}
\end{aligned}
$$

Definition: A matrix $A \in \mathbb{R}^{n \times n}$ is called invertible ($=$ non-singular = regular)
if the corresponding linear map $f_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is bijective.
otherwise we call A singular.
A matrix $\tilde{A} \in \mathbb{R}^{n \times n}$ is called the inverse of A if $f_{\tilde{A}}=\left(f_{A}\right)^{-1}$
Write A^{-1} (instead of \tilde{A})

Summary:

$$
\begin{aligned}
& f_{A^{-1}} \circ f_{A}=\text { id } \\
& f_{A} \circ f_{A^{-1}}=\text { id }
\end{aligned} \quad \Leftrightarrow \quad \begin{aligned}
& A^{-1} A=\mathbb{1} \\
& A^{-1}=\mathbb{1}
\end{aligned}
$$

Linear Algebra - Part 30
injectivity, surjectivity, bijectivity for square matrices
system of linear equations: $A x=b \Rightarrow A^{-1} A x=A^{-1} b \Rightarrow x=A^{-1} b$
Theorem: $A \in \mathbb{R}^{h \times n}$ square matrix. $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ induced linear map.
Then: $\quad f_{A}$ is injective $\Longleftrightarrow f_{A}$ is surjective

Proof: $(\Rightarrow) \quad f_{A}$ injective, standard basis of $\mathbb{R}^{n}\left(e_{1}, \ldots, e_{n}\right)$
$\Rightarrow \underbrace{\left(f_{A}\left(e_{1}\right), \ldots, f_{A}\left(e_{n}\right)\right)}_{\text {basis of } \mathbb{R}^{n}}$ still linearly independent
$\Rightarrow f_{A}$ is surjective
$(\Leftarrow) \quad f_{A}$ surjective

For each $y \in \mathbb{R}^{n}$, you find $x \in \mathbb{R}^{n}$ with $f_{A}(x)=y$.
We know: $\quad x=x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}$

$$
\begin{aligned}
& y=f_{A}(x)=x_{1} f_{A}\left(e_{1}\right)+x_{2} f_{A}\left(e_{2}\right)+\cdots+x_{n} f_{A}\left(e_{n}\right) \\
& \Rightarrow\left(f_{A}\left(e_{1}\right), \ldots, f_{A}\left(e_{n}\right)\right) \text { spans } \mathbb{R}^{n} \\
& \stackrel{n \text { vectors }}{\Rightarrow}\left(f_{A}\left(e_{1}\right), \ldots, f_{A}\left(e_{n}\right)\right) \text { linearly independent }
\end{aligned}
$$

Assume $f_{A}(x)=f_{A}(\tilde{x}) \Rightarrow f_{A}(\underbrace{x-\tilde{x}}_{V})=0$

$$
\begin{aligned}
& \Rightarrow V_{1} f_{A}\left(e_{1}\right)+V_{2} f_{A}\left(e_{2}\right)+\cdots+V_{n} f_{A}\left(e_{n}\right)=0 \\
& \Rightarrow V_{1}=V_{2}=\cdots=V_{n}=0 \\
& \Rightarrow x=\tilde{x} \Rightarrow f_{A} \text { is injective }
\end{aligned}
$$

Linear Algebra - Part 31

matrices
$A, B \in \mathbb{R}^{n \times n}$

We have: $\quad f_{B^{-1}} \circ f_{A^{-1}}=\left(f_{A B}\right)^{-1} \Rightarrow(A B)^{-1}=B^{-1} A^{-1}$

Important fact: $\quad f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \quad$ linear and bijective

$$
\Rightarrow f^{-1}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \quad \text { is also linear }
$$

Proof: $f^{-1}(\lambda y)=f^{-1}(\lambda \cdot f(x)) \underset{\hat{f} \text { linear }}{=} f^{-1}(f(\lambda x))=\lambda \cdot x=\lambda f^{-1}(y)^{\checkmark}$ There is exactly one x with $f(x)=y$

$$
\begin{aligned}
f^{-1}(y+\tilde{y}) & =f^{-1}(f(x)+f(\tilde{x}))=f_{\tilde{f} \text { linear }}^{-1}(f(x+\tilde{x}))=x+\tilde{x} \\
& =f^{-1}(y)+f^{-1}(\tilde{y}) \quad \vee
\end{aligned}
$$

Linear Algebra - Part 32

Transposition: changing the roles of columns and rows

$$
\begin{array}{r}
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)^{\top}=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right) \\
\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right)^{\top}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \\
\text { For } a \in \mathbb{R}^{n} \text { we have: }\left(a^{\top}\right)^{\top}=a
\end{array}
$$

Definition: For $A \in \mathbb{R}^{m \times n}$ we define $A^{\top} \in \mathbb{R}^{n \times m}$ (transpose of A) by:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \Rightarrow A^{\top}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right)
$$

Examples:
(a) $A=\left(\begin{array}{llll}1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0\end{array}\right) \Rightarrow A^{\top}=\left(\begin{array}{ll}1 & 2 \\ 2 & 0 \\ 0 & 3 \\ 1 & 0\end{array}\right)$
(b) $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \Rightarrow A^{\top}=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$
(c)

$$
A=\left(\begin{array}{lll}
1 & 4 & 5 \\
4 & 2 & 0 \\
5 & 0 & 3
\end{array}\right) \Rightarrow A^{T}=\left(\begin{array}{lll}
1 & 4 & 5 \\
4 & 2 & 0 \\
5 & 0 & 3
\end{array}\right) \quad \text { (symmetric matrix) }
$$

Remember:

$$
(A B)^{\top}=B^{\top} A^{\top}
$$

Linear Algebra - Part 33

$$
A \in \mathbb{R}^{m \times n} \leadsto A^{\top} \in \mathbb{R}^{n \times m}
$$

standard inner product in $\mathbb{R}^{n} \leadsto \begin{array}{r}\langle u, v\rangle\end{array} \quad \in \mathbb{R}$
$\leqslant u^{\top} v$
Proposition: for $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}$:

$$
\langle y, A x\rangle=\left\langle A^{\top} y, x\right\rangle \Uparrow \text { inner product in } \mathbb{R}^{m} \quad \text { inner product in } \mathbb{R}^{n}
$$

$$
\text { Proof: } \begin{aligned}
& \langle\tilde{u}, \tilde{v}\rangle=\tilde{u}^{\top} \tilde{v} \quad \text { for } \tilde{u}, \tilde{v} \in \mathbb{R}^{m} \quad\left(A^{\top} y\right)^{\top}=y^{\top} \cdot\left(A^{\top}\right)^{\top} \\
& \langle y, \tilde{A} x\rangle=y^{\top}(A x)=\left(y^{\top} A\right) x \stackrel{\swarrow}{=}\left(A^{\top} y\right)^{\top} x=\left\langle A^{\top} y, x\right\rangle
\end{aligned}
$$

Alternative definition: A^{\top} is the only matrix $B \in \mathbb{R}^{n \times m}$ that satisfies:

$$
\langle y, A x\rangle=\langle B y, x\rangle \quad \text { for all } x, y
$$

Linear Algebra - Part 34

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n} \text { induces a linear map } f_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}, x \mapsto A x \\
& \operatorname{Ran}(A):=\left\{A x \mid x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{m^{m}} \quad \underline{\text { range of } A} \text { (image of } A \text {) } \\
& n \operatorname{Ran}\left(f_{A}\right) \quad \text { (see start Learrining sets - Part s) }
\end{aligned}
$$

$$
\operatorname{Ker}(A):=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\} \subseteq \mathbb{R}^{n} \quad \frac{\text { kernel of } A}{(\text { null space of } A)}
$$

$f_{A}^{-1}[\{0\}]$ preimage of $\{0\}$ under f_{A}

Remember: $\operatorname{Ran}(A)=\operatorname{span}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$

$$
A=\left(\begin{array}{cc}
1 & 1 \\
a_{1} & \cdots \\
\mid & a_{n} \\
\mid & \mid
\end{array}\right)
$$

Solving LES? $\quad A x=b \quad$ existence of solutions: $b \in \operatorname{Ran}(A)$?
uniqueness of solutions: $\operatorname{Ker}(A) \neq\{0\}$?

Linear Algebra - Part 35

Definition: For $A \in \mathbb{R}^{m \times n}$ we define:

$$
\operatorname{rank}(A):=\operatorname{dim}(\operatorname{Ran}(A))
$$

$$
=\operatorname{dim}(\operatorname{span} \text { of columns of } A)
$$

$$
\leq \min (n, m)
$$

$$
A \text { has full } \operatorname{rank} \text { if } \operatorname{rank}(A)=\min (n, m)
$$

Example:

$$
\text { (a) } A=\left(\begin{array}{llll}
1 & 2 & 0 & 0
\end{array}\right), \quad \operatorname{rank}(A)=1
$$

(full rank)
(b)

$$
A=\left(\begin{array}{ccc}
2 & 2 & -4 \\
\underbrace{1} & 0 & -1
\end{array}\right), \quad \operatorname{rank}(A)=2 \quad \text { (full rank) }
$$

linearly independent

Definition: For $A \in \mathbb{R}^{m \times n}$ we define:
nullity (A) : $=\operatorname{dim}(\operatorname{Ker}(A))$

Rank-nullity theorem: For $A \in \mathbb{R}^{m \times n}$ (n columns)
$\operatorname{dim}(\operatorname{Ker}(A))+\operatorname{dim}(\operatorname{Ran}(A))=n$

Proof: $k=\operatorname{dim}(\operatorname{Ker}(A))$. Choose: $\left(b_{1}, \ldots, b_{k}\right)$ basis of $\operatorname{Ker}(A)$.
Steinitz Exchange Lemma $\Rightarrow\left(b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{r}\right)$ basis of \mathbb{R}^{n}

$$
\Gamma:=n-k
$$

$\operatorname{Ran}(A)=\operatorname{span}\left(A b_{1}, \ldots, A b_{k}, A c_{1}, \ldots, A c_{r}\right)$

$$
=\operatorname{span}\left(A c_{1}, \ldots, A c_{r}\right) \Rightarrow \operatorname{dim}(\operatorname{Ran}(A)) \leq r
$$

To show: $\left(A c_{1}, \ldots, A c_{r}\right)$ is linearly independent

$$
\lambda_{1} A c_{1}+\lambda_{2} A c_{2}+\cdots+\lambda_{r} A c_{r}=0
$$

$$
\stackrel{\text { linearity } \ 1}{ } A\left(\sum_{i=1}^{r} \lambda_{i} c_{i}\right) \Rightarrow \sum_{i=1}^{r} \lambda_{i} c_{i} \in \operatorname{Ker}(A)
$$

$$
\Rightarrow \lambda_{1}=\lambda_{2}=\cdots=\lambda_{r}=0
$$

$\Rightarrow \quad \operatorname{dim}(\operatorname{Ran}(A))=r$

Linear Algebra - Part 36

System of linear equations:

$$
\left.\left.\begin{array}{rl}
2 x_{1}+3 x_{2}+4 x_{3} & =1 \\
4 x_{1}+6 x_{2}+9 x_{3} & =1 \\
2 x_{1}+4 x_{2}+6 x_{3} & =1
\end{array}\right\} \begin{array}{l}
3 \text { equations } \\
3 \text { unknowns }
\end{array}\right\}
$$

$$
\left(\begin{array}{lll|l}
2 & 3 & 4 & 1 \\
4 & 6 & 9 & 1 \\
2 & 4 & 6 & 1
\end{array}\right)
$$

Example:

$$
\begin{aligned}
& x_{1}+3 x_{2}=7 \quad(\text { equation } 1) \\
& 2 x_{1}-x_{2}=0 \text { (equation 2) } \rightarrow x_{2}=2 x_{1} \\
& \begin{aligned}
\Rightarrow x_{1}+3\left(2 x_{1}\right) & =7 \\
\Leftrightarrow 7 x_{1} & =7 \Leftrightarrow x_{1}=1 \leadsto x_{2}=2
\end{aligned}
\end{aligned}
$$

\Rightarrow Only possible solution: $X=\binom{1}{2} \quad$ Check? $\sqrt{ }$

$$
\Rightarrow \text { The system has a unique solution given by } X=\binom{1}{2}
$$

Better method: Gaussian elimination

Example: $\quad x_{1}+3 x_{2}=7 \quad$ (equation 1)

$$
2 x_{1}-x_{2}=0 \quad(\text { equation } 2)-2 \cdot(\text { equation } 1)
$$

eliminate X_{1}

$$
\begin{array}{ll}
x_{1}+3 x_{2}=7 \quad(\text { equation 1) } \\
0-7 x_{2}=-14 \quad(\text { equation } 2) \cdot\left(-\frac{1}{7}\right)
\end{array} \quad \begin{array}{r}
x_{1}+3 x_{2}=7 \quad \text { (equation 1) } \\
x_{2}=2 \quad \text { (equation 2)" } \\
\end{array} \quad \begin{aligned}
& x=\binom{1}{2} \text { solution }
\end{aligned}
$$

Linear Algebra - Part 37

$$
\begin{aligned}
& A x=b \xrightarrow{\text { argamented mathix }}(A \mid b) \\
& A \Leftrightarrow \tilde{A}: \quad M A=\tilde{A} \Longleftrightarrow A=M^{-1} \tilde{A}
\end{aligned}
$$

For the sstem of linear equations: $\quad A x=b \longleftrightarrow M A x=M b \quad$ (new system) Example: $A=\left(\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right) \leadsto M A=\left(\begin{array}{cc}1 & 3 \\ 0 & -7\end{array}\right)$

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{c}
-\alpha_{1}^{\top}- \\
\vdots \\
-\alpha_{m}^{\top}-
\end{array}\right) \\
& C^{\top}=\left(0, \ldots, 0, c_{i}, 0, \ldots, 0, c_{j}, 0, \ldots, 0\right) \Rightarrow c^{\top} A=c_{i} \alpha_{i}^{\top}+c_{j} \alpha_{j}^{\top}
\end{aligned}
$$

Example:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\lambda & 0 & 1
\end{array}\right)\left(\begin{array}{l}
-\alpha_{1}^{\top}-\alpha_{2}^{\top}-\alpha_{3}^{\top}-\alpha_{1}^{\top}- \\
-\alpha_{2}^{\top}- \\
\alpha_{3}^{\top}+\lambda \cdot \alpha_{1}^{\top}
\end{array}\right)
$$

$$
Z_{Z_{3+\lambda 1}} \text { invertible with inverse: }\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\lambda & 0 & 1
\end{array}\right)
$$

Definition:

$$
Z_{i+\lambda j} \in \mathbb{R}^{m \times m}, i \neq j, \lambda \in \mathbb{R}
$$

defined as the identity matrix with λ at the (i, j) th position.
Example: (exchanging rows)

$$
\underbrace{\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)}_{P_{1 \leftrightarrow 3}}\binom{-\alpha_{1}^{\top}-\alpha_{2}^{\top}-}{-\alpha_{3}^{\top}-\alpha_{3}^{\top}-}=\binom{-\alpha_{2}^{\top}-}{-\alpha_{1}^{\top}-}
$$

Definition:

$$
\begin{array}{r}
P_{i \leftrightarrow j} \in \mathbb{R}^{m \times m}, i \neq j, \text { defined as the identity matrix where the } \\
i \text { ith and the } j \text { th rows are exchanged. }
\end{array}
$$

Definition: (scaling rows)

$$
\begin{aligned}
& \left.\quad\left(\begin{array}{ccc}
d_{1} & & \\
& \ddots & \\
& & d_{m}
\end{array}\right)\left(\begin{array}{c}
-\alpha_{1}^{\top}- \\
\vdots \\
-\alpha_{m}^{\top}-
\end{array}\right)=\left(\begin{array}{c}
-d_{1} \alpha_{1}^{\top}- \\
\vdots \\
\text { with } d_{k} \neq 0
\end{array}\right) . \begin{array}{l}
d_{m} \alpha_{m}^{\top}-
\end{array}\right) .
\end{aligned}
$$

Definition: row operations: finite combination of $Z_{i+\lambda_{j}}, P_{i \leftrightarrow j},\left(\begin{array}{lll}d_{1} & & \\ & \ddots & \\ & & d_{m}\end{array}\right), \ldots$

$$
\left(\text { for example: } M=Z_{3+71} Z_{2+81} P_{1 \leftrightarrow 2}\right)
$$

Property: For $A \in \mathbb{R}^{m \times n}$ and $M \in \mathbb{R}^{m \times m}$ (invertible), we have:

$$
\begin{aligned}
& \operatorname{Ker}(M A)=\operatorname{Ker}(A), \quad \operatorname{Ran}(M A)=M \operatorname{Ran}(A) \\
& \therefore\{M y \mid y \in \operatorname{Ran}(A)\}
\end{aligned}
$$

Linear Algebra - Part 38

Set of solutions: $\quad A x=b \quad\left(A \in \mathbb{R}^{m \times n}\right)$ $\hat{\imath}_{\text {solution: }} \tilde{x}$ satisfies $A \tilde{x}=b$

uniqueness needs $\operatorname{Ker}(A)=\{0\}$

existence needs $b \in \operatorname{Ran}(A)$

Proposition: For a system $\quad A x=b \quad\left(A \in \mathbb{R}^{m \times n}\right)$
the set of solutions $\quad S:=\left\{\tilde{x} \in \mathbb{R}^{n} \mid A \tilde{x}=b\right\}$
is an affine subspace (or empty).
More concretely: we have either $S=\varnothing$

$$
\begin{array}{r}
\text { or } S=V_{0}+\operatorname{ker}(A) \quad \text { for a vector } V_{0} \in \mathbb{R}^{n} \\
\therefore\left\{V_{0}+x_{0} \mid x_{0} \in \operatorname{Ker}(A)\right\}
\end{array}
$$

Proof: Assume $V_{0} \in S . \Rightarrow A V_{0}=b$
Set $\tilde{x}:=V_{0}+x_{0}$ for a vector $x_{0} \in \mathbb{R}^{n}$.
Then: $\quad \tilde{x} \in S \Leftrightarrow A \underbrace{\tilde{x}=b}_{\substack{v_{0} \\\left(v_{0}+x_{0}\right)}} \Leftrightarrow A \underbrace{A v_{0}}_{=b}+A x_{0}=b$

$$
\Leftrightarrow A x_{0}=0 \Leftrightarrow x_{0} \in \operatorname{ker}(A)
$$

Remember: Row operations don't change the set of solutions:

Linear Algebra - Part 39

Goal: Gaussian elimination (named after Carl Friedrich Gauß)

solve $A x=6$
\rightarrow use row operations to bring $(A \mid b)$ into upper triangular form

$$
\begin{aligned}
\left(\begin{array}{lll|l}
1 & 2 & 3 & 1 \\
0 & 2 & 1 & 1 \\
0 & 0 & 3 & 1
\end{array}\right)
\end{aligned} \begin{aligned}
& \text { backwards substitution: } \\
& \text { third row: } 3 x_{3}=1 \Rightarrow x_{3}=\frac{1}{3} \\
& \text { second row: } 2 x_{2}+x_{3}=1 \Rightarrow \Rightarrow x_{2}=\frac{1}{3}
\end{aligned} \quad \begin{aligned}
& \text { first row: } 1 x_{1}+2 x_{2}+3 x_{3}=1 \Rightarrow x_{1}=-\frac{2}{3}
\end{aligned}
$$

$$
\rightarrow \text { or use row operations to bring }(A \mid b) \text { into row echelon form }
$$

\longrightarrow construct solution set

Example: system of linear equations: $\quad 2 x_{1}+3 x_{2}-1 x_{3}=4$

$$
\begin{aligned}
& 2 x_{1}-1 x_{2}+7 x_{3}=0 \\
& 6 x_{1}+13 x_{2}-4 x_{3}=9
\end{aligned}
$$

$$
\begin{aligned}
&\left(\begin{array}{ccc|c}
2 & 3 & -1 & 4 \\
2 & -1 & 7 & 0 \\
6 & 13 & -4 & 9
\end{array}\right)-1 \cdot I \leadsto\left(\begin{array}{rrr|r}
2 & 3 & -1 & 4 \\
0 & -4 & 8 & -4 \\
0 & 4 & -1 & -3
\end{array}\right)+1 \cdot \mathbb{I} \\
& \leadsto\left(\begin{array}{rrr|r}
2 & 3 & -1 & 4 \\
0 & -4 & 8 & -4 \\
0 & 0 & 7 & -7
\end{array}\right) \underset{\text { substitution }}{\text { backwards }} \\
& x_{2}=3
\end{aligned} x_{x_{1}=-1} \begin{aligned}
& x_{1}=-1
\end{aligned}
$$

Gaussian elimination:

$$
\begin{aligned}
& \leadsto\left(\begin{array}{c}
\alpha_{1}^{\top} \\
\alpha_{2}^{\top}-\frac{a_{21}}{a_{11}} \alpha_{1}^{\top} \\
\alpha_{m}^{\top}-\frac{a_{m 1}}{a_{11}} \alpha_{1}^{\top}
\end{array}\right) \xrightarrow{\sim} \quad \begin{array}{l}
\text { continue iteratively } \\
\leadsto
\end{array} \quad \text { row echelon form }
\end{aligned}
$$

Linear Algebra - Part 40

Row echelon form

$$
A=\left(\begin{array}{ccccc}
\boxed{\mid} & 2 & 0 & 1 & 0 \\
0 & 0 & \boxed{2} & -1 & 4 \\
0 & 0 & 0 & 4 & 8 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Definition: A matrix $A \in \mathbb{R}^{m \times n}$ is in row echelon form if:
(1) All zero rows (if there are any) are at the bottom.
(2) For each row: the first non-zero entry is strictly to the right of the first non-zero entry of the row above. pivots

$$
A=\left(\begin{array}{cccc}
\boxed{1} & 3 & 5 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Definition:

Procedure:

$$
\begin{array}{r}
\left.\left.A x=b \xrightarrow{(A \mid b)} \begin{array}{r}
\text { row operations } \\
\\
\\
\\
\\
\\
\\
\\
\\
\text { Gaussian elimination }
\end{array} A^{\prime} \right\rvert\, b^{\prime}\right)
\end{array}
$$

row echelon form
solutions
S

Example:

$$
\begin{array}{ll}
\text { III } & 4 x_{4}=8-8 x_{5} \\
\text { II } \\
2 x_{2}-x_{4}=2-4 x_{5}
\end{array} \quad \Rightarrow \quad x_{4}=2-2 x_{5} \quad x_{5} \in \mathbb{R}
$$

$$
\Rightarrow 2 x_{3}-2+2 x_{5}=2-4 x_{5} \Rightarrow 2 x_{3}=4-6 x_{5} \Rightarrow x_{3}=2-3 x_{5}
$$

$$
\text { I } x_{1}+x_{4}=3-2 x_{2} \Rightarrow x_{1}+2-2 x_{5}=3-2 x_{2} \Rightarrow x_{1}=1-2 x_{2}+2 x_{5}
$$

set of solutions: $S=\left\{\left.\left(\begin{array}{c}1-2 x_{2}+2 x_{5} \\ x_{2} \\ 2-3 x_{5} \\ 2-2 x_{5} \\ x_{5}\end{array}\right) \right\rvert\, x_{2}, x_{5} \in \mathbb{R}\right\}$

$$
=\left\{\left.\left(\begin{array}{l}
1 \\
0 \\
2 \\
2 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
2 \\
0 \\
-3 \\
-2 \\
1
\end{array}\right) \right\rvert\, x_{2}, x_{5} \in \mathbb{R}\right\}
$$

$$
\begin{aligned}
& \begin{array}{cccc|c}
x_{1} & x_{2} & x_{3} & x_{4} \\
1 & 3 & 5 & 0 & 1
\end{array} \text { variables with no pivot in their columns are called } \\
& \text { free variables }\left(x_{3}\right) \\
& \text { variables with a pivot in their columns are called } \\
& \underline{\text { leading variables }}\left(X_{1}, X_{2}, X_{4}\right)
\end{aligned}
$$

Linear Algebra - Part 41

$\left(\begin{array}{ccccc|c}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & \\ \hline 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & -1 & 4 & 0 \\ 0 & 0 & 0 & 4 & 8 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
\Rightarrow \operatorname{ker}(A)=\left\{\left.x_{2}\left(\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
2 \\
0 \\
-3 \\
-2 \\
1
\end{array}\right) \right\rvert\, x_{2}, x_{5} \in \mathbb{R}\right\}
$$

Remember:

$$
\begin{aligned}
& \operatorname{dim}(\operatorname{Ker}(A))=\text { number of free variables } \\
& + \\
& \operatorname{dim}(\operatorname{Ran}(A))=\text { number of leading variables } \\
& =n
\end{aligned}
$$

Proposition: For $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, we have the following equivalences:
(1) $A x=6$ has at least one solution.
(2) $b \in \operatorname{Ran}(A)$
(3) b can be written as a linear combination of the columns of A.
(4) Row echelon form looks like:

Proof:
(1) \Leftrightarrow (2) given by definition of $\operatorname{Ran}(A)$
$(2) \Leftrightarrow$ (3) given by column picture of $\operatorname{Ran}(A)$

$$
\begin{aligned}
\operatorname{Ran}(A) & =\left\{\left.\left(\begin{array}{ccc}
1 & 1 \\
a_{1} & \cdots & a_{n} \\
1 & 1
\end{array}\right) x \right\rvert\, x \in \mathbb{R}^{n}\right\} \\
& =\left\{\left.x_{1} \cdot\left(\begin{array}{l}
1 \\
a_{1} \\
1
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
1 \\
a_{n} \\
1
\end{array}\right) \right\rvert\, x \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

$(4) \Rightarrow(1)$
Assume we have this:

by backwards substitution.

$$
\text { (or argue with } \operatorname{rank}(A)=\operatorname{rank}((A \mid b)))
$$

$(1) \Rightarrow(4) \quad$ (let's show: $\neg(4) \Rightarrow \neg(1))$

Linear Algebra - Part 42

$A x=b \leadsto$ row echelon form

$$
S=\phi \quad \text { or } \quad S=V_{0}+\operatorname{Ker}(A)
$$

Proposition:
For $A \in \mathbb{R}^{m \times n}$, we have the following equivalences:
(a) For every $b \in \mathbb{R}^{m}: A x=b$ has at most one solution.
(b) $\operatorname{Ker}(A)=\{0\}$
(c) Row echelon form looks like:

(d) $\operatorname{rank}(A)=h$
(e) The linear map $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, x \mapsto A x$ is injective.

Result for square matrices: For $A \in \mathbb{R}^{n \times n}$:

Linear Algebra - Part 43

$A \in \mathbb{R}^{n \times n} \longrightarrow \operatorname{det}(A) \in \mathbb{R}$ with properties:
(1) $A=\left(\begin{array}{ccc}\mid & & \mid \\ a_{1} & \ldots & a_{n} \\ \mid & & \mid\end{array}\right)$, columns span a parallelepiped

$$
\text { volume }=|\operatorname{det}(A)|
$$

(2) $\operatorname{det}(A)=0 \Leftrightarrow\left(\begin{array}{c}\mid \\ a_{1} \\ \mid\end{array}\right), \ldots,\left(\begin{array}{l}\mid \\ a_{n} \\ \mid\end{array}\right)$ linearly dependent

$$
\Leftrightarrow A \text { is not invertible }
$$

(3) sign of $\operatorname{det}(A)$ gives orientation $\left(\operatorname{det}\left(\mathbb{1}_{n}\right)=+1\right)$

Linear Algebra - Part 44
$A \in \mathbb{R}^{2 \times 2} \longrightarrow$ system of linear equations $A x=6$

$$
\begin{aligned}
& \text { Assume } * 0 \\
& \left(\begin{array}{ll|l}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2}
\end{array}\right) \underset{\mathbb{I}-\frac{a_{11}}{a_{11}} \mathrm{I}}{\sim}\left(\begin{array}{cc|c}
a_{11} & a_{12} & b_{1} \\
0 & a_{22} \frac{a_{21}}{a_{11}} a_{12} & b_{2}-\frac{a_{21}}{a_{11}} b_{1}
\end{array}\right) \underset{\mathbb{I} \cdot a_{11}}{\longrightarrow} \\
& \leadsto\left(\begin{array}{cc|c}
a_{11} & a_{12} & b_{1} \\
\hline 0 & a_{11} a_{22}-a_{21} a_{12} & a_{11} b_{2}-a_{21} b_{1}
\end{array}\right) \\
& \star 0 \Leftrightarrow \text { we have a unique solution }
\end{aligned}
$$

Definition: For a matrix $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in \mathbb{R}^{2 \times 2}$, the number

$$
\operatorname{det}(A):=a_{11} a_{22}-a_{12} a_{21}
$$

is called the determinant of A.

What about volumes? \leadsto vol $_{n}$

$$
\text { in } \mathbb{R}^{2}: v_{2}(u, v):=\frac{\text { orientated }}{n \pm} \text { area of parallelogram }
$$

Relation to cross product: embed \mathbb{R}^{2} into $\mathbb{R}^{3}: \quad \tilde{u}:=\left(\begin{array}{l}u_{1} \\ u_{2} \\ 0\end{array}\right), \tilde{v}=\left(\begin{array}{c}v_{1} \\ v_{2} \\ 0\end{array}\right)$

$$
\|\tilde{u} \times \tilde{v}\|=\left\|\left(\begin{array}{c}
0 \\
0 \\
u_{1} v_{2}-v_{1} u_{2}
\end{array}\right)\right\|=\underbrace{\left.\left\lvert\, \begin{array}{l}
u_{1} v_{2}-v_{1} u_{2}
\end{array}\right.\right)}_{\operatorname{det}\left(\begin{array}{ll}
1 & 1 \\
u & y \\
1 & 1
\end{array}\right)}
$$

Result: $\operatorname{vol}_{2}(u, v)=\operatorname{det}\left(\begin{array}{ll}1 & 1 \\ u & y \\ 1 & 1\end{array}\right) \quad$ (volume function $=$ determinant)

Linear Algebra - Part
45
volume measure? . area in \mathbb{R}^{2}

- n-dimensional volume \mathbb{R}^{n}

Definition: vol $_{n}: \underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{n \text { times }} \longrightarrow \mathbb{R}$ is called n-dimensional volume function if
(a) $\operatorname{vol}_{n}\left(u^{(1)}, u^{(2)}, \ldots, \alpha \cdot u^{(j)}, \ldots, u^{(n)}\right)=\alpha \cdot \operatorname{vol}_{n}\left(u^{(1)}, u^{(2)}, \ldots, u^{(j)}, \ldots, u^{(n)}\right)$

$$
\begin{aligned}
& \text { for all } u^{(1)}, \ldots, u^{(n)} \in \mathbb{R}^{n} \\
& \text { for all } \alpha \in \mathbb{R} \\
& \text { for all } j \in\{1, \ldots, n\}
\end{aligned}
$$

(b)

$$
\begin{aligned}
v o l_{n}\left(u^{(1)}, u^{(2)}, \ldots, u^{\left.(j)+v, \ldots, u^{(n)}\right)=}\right. & \operatorname{vol}_{n}\left(u^{(1)}, u^{(2)}, \ldots, u^{(j)}, \ldots, u^{(n)}\right) \\
& +v o l_{n}\left(u^{(1)}, u^{(2)}, \ldots, v, \ldots, u^{(n)}\right)
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \operatorname{vol}_{n}\left(u^{(1)}, u^{(2)}, \ldots, u^{(i)}, \ldots, u^{(j)}, \ldots, u^{(n)}\right) \\
& \quad=-\operatorname{vol}_{n}\left(u^{(1)}, u^{(2)}, \ldots, u^{(j)}, \ldots, u^{(i)}, \ldots, u^{(n)}\right)
\end{aligned}
$$

for all $u^{(1)}, \ldots, u^{(n)} \in \mathbb{R}^{n}$ for all $i, j \in\{1, \ldots, n\}$ $i \neq j$
(d) $\operatorname{vol}_{n}\left(e_{1}, e_{2}, \ldots, e_{n}\right)=1$ (unit hypercube)

Result in $\mathbb{R}^{2}: \quad \operatorname{vol}_{2}\left(\binom{a}{c},\binom{b}{d}\right)=\operatorname{vol}_{2}\left(\binom{a}{0}+\binom{0}{c},\binom{b}{d}\right)$

$$
\begin{aligned}
& \stackrel{(b)}{=} \operatorname{vol}_{2}\left(\binom{a}{0},\binom{b}{d}\right)+\operatorname{vol}_{2}\left(\binom{0}{c},\binom{b}{d}\right) \\
& \stackrel{(a)}{=} a \cdot \operatorname{vol}_{2}\left(\binom{1}{0},\binom{b}{d}\right)+c \cdot \operatorname{vol}_{2}\left(\binom{0}{1},\binom{b}{d}\right) \\
& \stackrel{(b)}{=} a \cdot \mathrm{vol}_{2}\left(\binom{1}{0},\binom{b}{0}\right)+a \cdot \mathrm{vol}_{2}\left(\binom{1}{0},\binom{0}{d}\right)+c \cdot \mathrm{vol}_{2}\left(\binom{0}{1},\binom{b}{0}\right)+c \cdot \mathrm{vol}_{2}\left(\binom{0}{1},\binom{0}{d}\right) \\
& \left.\begin{array}{l}
(b) \\
= \\
(c),(d) \\
= \\
\mathrm{vol}_{2}\left(\binom{1}{0},\binom{1}{0}\right.
\end{array}\right)+\underbrace{a \cdot d \underbrace{\operatorname{vol}_{2}\left(\binom{1}{0},\binom{0}{1}\right)}_{-b}+c \cdot \underbrace{b \cdot v_{2}\left(\binom{0}{1},\binom{1}{0}\right)}_{=-1}+c \cdot \underbrace{a}_{=0} b) \cdot \underbrace{\operatorname{vol}_{2}\left(\binom{0}{1},\binom{0}{1}\right.}_{=-1})}_{=0} \\
& \stackrel{(c),(d)}{=} a \cdot d-b \cdot c=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{aligned}
$$

Define: $\operatorname{det}\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right)=\operatorname{vol}_{n}\left(\left(\begin{array}{c}a_{11} \\ \vdots \\ a_{n 1}\end{array}\right),\left(\begin{array}{c}a_{12} \\ \vdots \\ a_{n 2}\end{array}\right), \cdots\left(\begin{array}{c}a_{1 n} \\ \vdots \\ a_{n n}\end{array}\right)\right)$

Linear Algebra - Part 46

n-dimensional volume form: vol $_{n}: \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$

- linear in each entry
- antisymmetric
- $\operatorname{vol}_{n}\left(e_{1}, e_{2}, \ldots, e_{n}\right)=1$

Let's calculate:

$$
\operatorname{vol}_{n}(\left(\begin{array}{c}
a_{11} \\
\vdots \\
a_{n 1}
\end{array}\right), \underbrace{\left(\begin{array}{c}
a_{12} \\
\vdots \\
a_{n 2}
\end{array}\right), \ldots\left(\begin{array}{c}
a_{1 n} \\
\vdots \\
a_{n n}
\end{array}\right)}_{(*)})=\operatorname{vol}_{n}\left(a_{11} \cdot e_{1}+\cdots+a_{n 1} e_{n 1}(*)\right)
$$

$=a_{11} \cdot \operatorname{vol}_{n}\left(e_{1},(*)\right)+\cdots+a_{n 1} \cdot \operatorname{vol}_{n}\left(e_{n},(*)\right)$
$=\sum_{j 1}^{n} a_{j, 1} \operatorname{vol}_{n}\left(e_{j 11}(*)\right)=\sum_{j 1}^{n} a_{j, 1} \operatorname{vol}_{n}\left(e_{j 11}\left(\begin{array}{c}a_{12} \\ \vdots \\ a_{n 2}\end{array}\right), \ldots\left(\begin{array}{c}a_{1 n} \\ \vdots \\ a_{n n}\end{array}\right)\right)$
$=\sum_{j=1}^{n} \sum_{j_{2}=1}^{n} a_{j 11} a_{j 212} \cdot \operatorname{vol}_{n}\left(e_{j 11} e_{j 21}\left(\begin{array}{c}a_{13} \\ \vdots \\ a_{n 3}\end{array}\right), \ldots,\left(\begin{array}{c}a_{1 n} \\ \vdots \\ a_{n n}\end{array}\right)\right)$
$=\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \cdots \sum_{j_{n}=1}^{n} a_{j_{1}, 1} a_{j_{2}, 2} \cdots a_{j_{n}, n} \cdot \underbrace{v o l_{n}\left(e_{j_{1}}, e_{j 2}, \ldots, e_{j n}\right)}_{=0 \text { if two }}$
permutation of
$\{1, \ldots, n\}$

$$
\begin{aligned}
& =\sum_{\left(j_{1}, \ldots, j_{n}\right) \in S_{n}} a_{j_{1} 1} a_{j_{2}, 2} \cdots a_{j_{n}, n} \cdot \underbrace{\operatorname{vol}_{n}\left(e_{j 1}, e_{j 2}, \ldots, e_{j n}\right)} \\
& \text { where all entries } \\
& \begin{array}{l}
\text { where all entries } \\
\text { are different set of all permutations of }\{1, \ldots, n\}
\end{array} \\
& \left.\operatorname{sgn}\left(j_{1}, \ldots, j_{n}\right)\right)= \begin{cases}+1, & \begin{array}{l}
\text { even number of exchanges } \\
\text { to get to }(1, \ldots, n)
\end{array} \\
-1, & \text { odd number of exchanges } \\
\text { to get to }(1, \ldots, h)\end{cases} \\
& =\sum_{\left(j_{1}, \ldots, j_{n}\right) \in S_{n}} \operatorname{sgn}\left(\left(j_{\left.\left.1, \ldots, j_{n}\right)\right)} a_{j_{11} 1} a_{j_{2}, 2} \cdots a_{j_{n 1} n}=\operatorname{det}\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\right.\right.
\end{aligned}
$$

Linear Algebra - Part 47

Rule of Sarrus:

Example:

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & -1 & -2 \\
1 & 4 & 1
\end{array}\right)=-1+8+(-4) \underline{-(-1)}-(-8)-4=8
$$

Linear Algebra - Part 48

4×4-matrix:
$\left.\operatorname{det}\left(\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right)=a_{11} \cdot \operatorname{det}\left(\begin{array}{lll}a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44}\end{array}\right)\right)_{\text {permutations }}$
24 permutations
$-a_{21} \cdot \operatorname{det}\left(\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ 44 & a_{42} & a_{43} & a_{44}\end{array}\right)$

$+a_{31} \cdot \operatorname{det}\left(\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ \int_{41} & a_{32} & a_{33} & a_{34} \\ a_{43} & a_{44}\end{array}\right)$
$-a_{41} \cdot \operatorname{det}\left(\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right)^{2}$ permutations
Idea: $n \times n \leadsto(n-1) \times(n-1) \leadsto 3 \times 3 \leadsto 2 \times 2 \leadsto 1 \times 1$

Laplace expansion: $A \in \mathbb{R}^{n \times n}$. For j th column:

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} \cdot \operatorname{det}\left(A^{(i, j)}\right) \quad \text { expanding along the } j \text { th column }
$$

For ith row: ith row and j th column are deleted

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \cdot \operatorname{det}\left(A^{(i, j)}\right) \text { expanding along the ith row }
$$

Example:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cccc}
{ }^{+} 0 & 2 & 3 & 4 \\
2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
6 & 0 & 1 & 2
\end{array}\right) & =-2 \cdot \operatorname{det}\left(\begin{array}{ccc}
{ }^{+} 2 & 3 & 4 \\
1 & { }^{+} 0 & 0 \\
0 & 1 & 2
\end{array}\right) \\
& \begin{array}{l}
\text { expaning along } \\
\text { 2nd row }
\end{array} \\
& =(-2)(-1) \cdot 1 \cdot \operatorname{det}\left(\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right)=2 \cdot(6-4)=4
\end{aligned}
$$

Linear Algebra - Part 49

Triangular matrix:

$$
\operatorname{det}\left(\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & \cdots & a_{1 n} \\
& a_{22} & \ddots & & \vdots \\
& a_{33} & & \vdots \\
& & \ddots & \vdots
\end{array}\right)=a_{11} \cdot a_{22} \cdots a_{n n}
$$

Block matrices:

$$
\begin{aligned}
& \left(\begin{array}{cccccc}
a_{11} & \cdots & a_{1 m} & b_{11} & b_{12} & \cdots \\
\vdots & \ddots & b_{1 k} \\
a_{m 1} & \cdots & a_{m m} & \vdots & \ddots & \\
b_{m 1} & \cdots & b_{m k} \\
\vdots & \cdots & 0 & C_{11} & C_{12} & \cdots \\
C_{1 k} \\
\vdots & \ddots & C_{21} & \ddots & \vdots \\
0 & \cdots & 0 & C_{k 1} & \cdots & C_{k k}
\end{array}\right)=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right) \\
& \Rightarrow \operatorname{det}\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)=\operatorname{det}(A) \cdot \operatorname{det}(C)
\end{aligned}
$$

Proposition: $\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)$

Proposition: $\quad A, B \in \mathbb{R}^{n \times n}: \quad \operatorname{det}(A \cdot B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$ multiplicative map

If A is invertible, then: $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$

$$
\operatorname{det}\left(A^{-1} B A\right)=\operatorname{det}(B)
$$

Linear Algebra - Part 50

determinant is multiplicative: $\operatorname{det}(M A)=\operatorname{det}(M) \cdot \operatorname{det}(A)$
Gaussian elimination: $A \xrightarrow{\sim} M A$ row operations (see part 37)

Adding rows with $Z_{i+\lambda_{j}}(i \neq j, \lambda \in \mathbb{R})$ does not change the determinant:
Exchanging rows with $P_{i \leftrightarrow j}(i \neq j)$ does change the sign of the determinant:
Scaling one row with factor d_{j} scales the determinant by d_{j} :
column operations? $\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A) \checkmark$

Example:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccccc}
-1 & 1 & 0 & -2 & 0 \\
0 & 2 & 1 & -1 & 4 \\
1 & 0 & 0 & -3 & 1 \\
1 & 2 & 0 & 0 & 3 \\
0 & -2 & 1 & 1 & 2
\end{array}\right) \stackrel{\substack{\text { rows } \\
\mathbb{I}-1 \cdot V}}{=} \operatorname{det}\left(\begin{array}{ccccc}
+-1 & - & + & -2 & 0 \\
0 & 4 & 0 & -2 & 2 \\
1 & 0 & 0 & -3 & 1 \\
1 & 2 & 0 & 0 & 3 \\
0 & -2 & +1 & 1 & 2
\end{array}\right) \\
& \stackrel{\downarrow}{=}(+1) \cdot \operatorname{det}\left(\begin{array}{rrrr}
-1 & 1 & -2 & 0 \\
0 & 4 & -2 & 2 \\
1 & 0 & -3 & 1 \\
1 & 2 & 0 & 3
\end{array}\right) \\
& \stackrel{\stackrel{I}{I}-2 \underline{\mathbb{V}}}{\stackrel{I V}{=}} \operatorname{det}\left(\begin{array}{rrrr}
-1^{+} & 1 & -2 & 0 \\
0^{-} & 0^{+} & 0^{-} & 2^{+} \\
1 & -2 & -2 & 1 \\
1 & -4 & 3 & 3
\end{array}\right)
\end{aligned}
$$

Laplace expansion

$$
\stackrel{\downarrow}{=}(+2) \cdot \operatorname{det}\left(\begin{array}{ccc}
-1 & 1 & -2 \\
1 & -2 & -2 \\
1 & -4 & 3
\end{array}\right)=2 \cdot 13=26
$$

Linear Algebra - Part 51

matrix $A \in \mathbb{R}^{n \times n} \leadsto$ linear map $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \mapsto A x$
linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \longrightarrow$ there is exactly one $A \in \mathbb{R}^{n \times n}$

$$
\text { with } f=f_{A}
$$

Here: $A=\left(\begin{array}{ccc}\mid & \mid & \\ f\left(e_{2}\right) & f\left(e_{2}\right) & \ldots \\ \mid & \mid & f\left(e_{n}\right) \\ \mid & & \\ \mid\end{array}\right)$
unit cube in \mathbb{R}^{n}

Remember: $\operatorname{det}(A)$ gives the relative change of volume caused by f_{A}.

Definition: For a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, we define the determinant:

$$
\left.\operatorname{det}(f):=\operatorname{det}(A) \text { where } A \text { is }\left(\begin{array}{ccc}
\mid & \mid & \mid \\
f\left(e_{1}\right) & f\left(e_{2}\right) & \cdots
\end{array}\right) f\left(e_{n}\right)\right)
$$

Multiplication rule: $\operatorname{det}(f \circ g)=\operatorname{det}(f) \operatorname{det}(g)$

Volume change:

Linear Algebra - Part 52

We know for $A \in \mathbb{R}^{2 \times 2}: \operatorname{det}(A) \neq 0 \Leftrightarrow A x=b$ has a unique solution $\Leftrightarrow A$ invertible $=$ non-singular

For $A \in \mathbb{R}^{n \times n}: \operatorname{det}(A)=0 \Leftrightarrow A$ singular

Proposition:
For $A \in \mathbb{R}^{n \times n}$, the following claims are equivalent:

- $\operatorname{det}(A) \neq 0$
- columns of A are linearly independent
- rows of A are linearly independent
- $\operatorname{rank}(A)=n$
- $\operatorname{Ker}(A)=\{0\}$
- A is invertible
- $A x=b$ has a unique solution for each $b \in \mathbb{R}^{n}$

Cramer's rule: $A \in \mathbb{R}^{n \times n}$ non-singular, $b \in \mathbb{R}^{n}, x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \dot{x}_{n}\end{array}\right) \in \mathbb{R}^{n}$ unique solution of $A x=b$.

Then:

$$
x_{i}=\frac{\operatorname{det}\left(\begin{array}{llllll}
\mid & & & \mid & & \\
a_{1} & \ldots & a_{i-1} & b & a_{i+1} & \ldots \\
\mid & & a_{n} \\
\mid & & \mid & \mid
\end{array}\right)}{\operatorname{det}\left(\begin{array}{llllll}
\mid & & \mid & \mid & & \mid \\
a_{1} & \ldots & a_{i-1} & a_{i} & a_{i+1} & \ldots
\end{array}\right)}
$$

Proof: Use cofactor matrix $G \in \mathbb{R}^{n \times n}$ defined: $c_{i j}=(-1)^{i+j} \cdot \operatorname{det}(A)$ jth column deleted $\stackrel{\substack{\text { Laplace } \\ \text { expansion } \\=}}{=} \operatorname{det}\left(\begin{array}{lll|lll}\mid & & & \mid & & \\ a_{1} & \ldots & a_{j-1} & e_{i} & a_{j+1} & \\ \mid & & & & & a_{n} \\ & & & & & \end{array}\right)$
We can show: $\quad A^{-1}=\frac{C^{\top}}{\operatorname{det}(A)}$
Hence: $\quad x=A^{-1} b=\frac{C^{\top} b}{\operatorname{det}(A)}$ and $\left(C^{\top} b\right)_{i}=\sum_{k=1}^{n}\left(C^{\top}\right)_{i k} b_{k}=\sum_{k=1}^{n} C_{k i} b_{k}$

$$
=\sum_{k=1}^{n} \operatorname{det}\left(\begin{array}{ccc|ccc}
\mid & & \mid & & & \\
a_{1} & \ldots & a_{i-1} & & & \\
\mid & & e_{k} & a_{i+1} & \ldots & a_{n}
\end{array}\right) b_{k}
$$

Linear Algebra - Part 53

eigenvalue (German: Eigenwert) (David Hilbert, 1904)
\rightarrow proper/own/characteristic
consider: $A \in \mathbb{R}^{n \times n} \longleftrightarrow f_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \quad$ linear map

Question: Are there vectors which are only scaled by f_{A} ?

Answer:

$$
A x=\lambda \cdot x \quad \text { for a number } \lambda \in \mathbb{R}
$$

$\Leftrightarrow(A-\lambda \mathbb{1}) x=0 \quad$ for a number $\lambda \in \mathbb{R}$
$\Leftrightarrow \quad x \in \operatorname{Ker}(A-\lambda \mathbb{1})$ for a number $\lambda \in \mathbb{R}$

Example:

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad A\binom{x_{1}}{x_{2}}=\lambda \cdot\binom{x_{1}}{x_{2}} \Leftrightarrow \begin{aligned}
& x_{1}+x_{2}=\lambda \cdot x_{1} \\
& x_{2}=\lambda \cdot x_{2} \\
& \mathbb{I}
\end{aligned}
$$

For $\mathbb{I}: \lambda=1$ or $\underbrace{x_{2}=0}_{\underline{I}}$

$$
\stackrel{I}{\Rightarrow} \quad x_{1}=\lambda \cdot x_{1} \Rightarrow \lambda=1 \text { or } x_{1}=0
$$

For I: $\quad x_{1}+x_{2}=x_{1} \Rightarrow x_{2}=0$

Solution: eigenvalue: $\lambda=1$
eigenvectors: $X=\binom{x_{1}}{0}$ for $x_{1} \in \mathbb{R} \backslash\{0\}$
Definition: $A \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{R}$.
If there is $x \in \mathbb{R}^{h} \backslash\{0\}$ with $A x=\lambda x$, then:

- λ is called an eigenvalue of A
- X is called an eigenvector of A (associated to λ)
- $\operatorname{Ker}(A-\lambda \mathbb{1})$ eigenspace of A (associated to λ)

The set of all eigenvalues of $A: \operatorname{spec}(A)$ spectrum of A

Linear Algebra - Part 54

$$
\begin{aligned}
A \in \mathbb{R}^{n \times n} & \longleftrightarrow f_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \quad \text { linear map } \\
& \text { eigenvalue equation: } A x=\lambda \cdot x \quad, \quad x \neq 0
\end{aligned}
$$

optimal coordinate system: $A \in \mathbb{R}^{2 \times 2}, A x=2 x, A y=1 y$

$u=a \cdot x+b \cdot y$

$$
\begin{aligned}
A u & =A(a \cdot x+b \cdot y) \\
& =a \cdot A x+6 A y \\
& =2 a x+1 b y
\end{aligned}
$$

How to find enough eigenvectors?
$x \neq 0$ eigenvector associated to eigenvalue $\lambda \Leftrightarrow x \in \operatorname{Ker}(\underbrace{A-\lambda \mathbb{1}})$
singular matrix

$$
\begin{aligned}
\operatorname{det}(A-\lambda \mathbb{1})=0 & \Leftrightarrow \operatorname{ker}(A-\lambda \mathbb{1}) \text { is non-trivial } \\
& \Leftrightarrow \lambda \text { is eigenvalue of } A
\end{aligned}
$$

Example:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right), \quad A-\lambda \mathbb{1}=\left(\begin{array}{cc}
3-\lambda & 2 \\
1 & 4-\lambda
\end{array}\right) \\
& \begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
3-\lambda & 2 \\
1 & 4-\lambda
\end{array}\right)=(3-\lambda)(4-\lambda)-2 \quad \text { characteristic polynomial } \\
&=10-7 \lambda+\lambda^{2} \\
&=(\lambda-5)(\lambda-2) \stackrel{!}{=} 0 \\
& \Rightarrow 2 \text { and } 5 \text { are eigenvalues of } A
\end{aligned}
\end{aligned}
$$

General case: for $A \in \mathbb{R}^{n \times n}$:

$$
\operatorname{det}(A-\lambda \mathbb{1})=\operatorname{det}\left(\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda & & \vdots \\
\vdots & & \ddots & \\
a_{n 1} & \cdots & & a_{n n}-\lambda
\end{array}\right)
$$

Leibniz formula

$$
\begin{aligned}
& \stackrel{\downarrow}{=}\left(a_{11}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)+\cdots \\
& =(-1)^{n} \cdot \lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda^{1}+c_{0}
\end{aligned}
$$

Definition: For $A \in \mathbb{R}^{n \times n}$, the polynomial of degree n given by

$$
p_{A}: \quad \lambda \longmapsto \operatorname{det}(A-\lambda \mathbb{1})
$$

is called the characteristic polynomial of A.

Remember: The zeros of the characteristic polynomial are exactly the eigenvalues of A.

Linear Algebra - Part 55

```
\lambda\epsilon\operatorname{spec}(A)\Leftrightarrow\operatorname{det}(A-\lambda\mathbb{1})=0
```

Fundamental theorem of algebra: For $a_{n} \neq 0$ and $a_{n}, a_{n-1}, \ldots, a_{0} \in \mathbb{C}$, we have:

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

has n solutions $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{C}$ (not necessarily distinct).
Hence:

$$
p(x)=a_{n}\left(x-x_{n}\right) \cdot\left(x-x_{n-1}\right) \cdots\left(x-x_{1}\right)
$$

Conclusion for characteristic polynomial: $A \in \mathbb{R}^{n \times n}, p_{A}(\lambda):=\operatorname{det}(A-\lambda \mathbb{1})$

- $p_{A}(\lambda)=0$ has at least one solution in \mathbb{C}
$\Rightarrow A$ has at least one eigenvalue in \mathbb{C}

$$
\text { Example: } \begin{aligned}
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) & \Rightarrow p_{A}(\lambda)=\lambda^{2}+1 \\
& \Rightarrow-i \text { and } i \text { are eigenvalues }
\end{aligned}
$$

- $p_{A}(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)$

$$
\text { Example: } A=\left(\begin{array}{lll}
1 & & \\
& 2 & \\
& & \\
& & 2
\end{array}\right) \Rightarrow p_{A}(\lambda)=(\lambda-1)^{2}(\lambda-2)^{2}
$$

Definition: If $\tilde{\lambda}$ occurs k times in the factorisation $p_{A}(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right)$, then we say: $\tilde{\lambda}$ has algebraic multiplicity $k=: \alpha(\tilde{\lambda})$

Remember:

- If $\tilde{\lambda} \in \operatorname{spec}(A) \Leftrightarrow 1 \leq \alpha(\hat{\lambda}) \leq n$
- $\sum_{\tilde{\lambda} \in \mathbb{C}} \alpha(\tilde{\lambda})=n$

Linear Algebra - Part
eigenvalues: $\lambda \in \operatorname{spec}(A) \Leftrightarrow \operatorname{det}(A-\lambda \mathbb{1})=0$
characteristic polynomial
Next step for a given $\lambda \in \operatorname{spec}(A)$:

$$
\begin{gathered}
\operatorname{Ker}(A-\lambda \mathbb{1}) \\
\text { Solve: } \quad\left(\begin{array}{cccc|c}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} & 0 \\
a_{21} & a_{22}-\lambda & & \vdots & 0 \\
\vdots & & \ddots & & \vdots \\
a_{n 1} & \cdots & & a_{n n}-\lambda & 0
\end{array}\right)
\end{gathered}
$$

Solution set: eigenspace (associated to λ)
Definition: $A \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{R}$ eigenvalue

$$
\gamma(\lambda):=\operatorname{dim}(\operatorname{Ker}(A-\lambda \mathbb{1})) \quad \text { geometric multiplicity of } \lambda
$$

Example:
$A=\left(\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right) \quad$ characteristic polynomial:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda \mathbb{1})=(2-\lambda)(2-\lambda)(3-\lambda)=(2-\lambda)^{2}(3-\lambda) \\
& \quad \Rightarrow \operatorname{spec}(A)=\{2,3\}
\end{aligned}
$$

algebraic multiplicity 2 algebraic multiplicity 1

$$
\operatorname{Ker}(A-2 \cdot \mathbb{1})=\operatorname{Ker}\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

solve system: $\left.\left(\begin{array}{lll|l}0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right) \xrightarrow{\substack{\text { exchange } \\ \mathbb{I} \\ \text { and }}}\left(\begin{array}{lll|l}\sigma^{x_{1}} & \text { free variable } \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \leadsto \begin{array}{l}x_{2}=0 \\ 0\end{array}\right)$
backwards substitution \uparrow
solution set: $\left\{\left.\left(\begin{array}{l}x_{1} \\ 0 \\ 0\end{array}\right) \right\rvert\, x_{1} \in \mathbb{R}\right\}=\operatorname{span}\left(\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right)$
eigenvector
\Rightarrow geometric multiplicity $\gamma(2)=1<\alpha(2)$

Linear Algebra - Part 57

Proposition:

Recall:
$\operatorname{det}(A-\lambda \mathbb{1})=0$ $\stackrel{\Leftrightarrow}{\Leftrightarrow}$
(a) $\operatorname{spec}\left(\begin{array}{cccc}a_{11} & a_{12} & a_{13} & \cdots \\ & a_{1 n} \\ & a_{22} & & a_{2 n} \\ & & \ddots & \vdots \\ & & & a_{n n}\end{array}\right)=\left\{a_{11}, a_{22}, \ldots, a_{n n}\right\}$

(c)

$$
\operatorname{spec}\left(A^{\top}\right)=\operatorname{spec}(A)
$$

Example:
(a)

$$
\operatorname{spec}\left(\begin{array}{llll}
2 & 5 & 8 & 9 \\
0 & 3 & 0 & 8 \\
0 & 0 & 2 & 7 \\
0 & 0 & 0 & 1
\end{array}\right)=\{1,2,3\}
$$

(b)

$$
\left.\begin{array}{rl}
\operatorname{spec}\left(\begin{array}{llllll}
1 & 2 & 4 & 5 & 8 & 7 \\
0 & 7 & 7 & 9 & 8 & 4 \\
0 & 0 & 5 & 0 & 0 & 0 \\
0 & 0 & 7 & 8 & 0 & 0 \\
0 & 0 & 5 & 6 & 1 & 2 \\
0 & 0 & 7 & 9 & 0 & 3
\end{array}\right) & =\operatorname{spec}\left(\begin{array}{ll}
1 & 2 \\
0 & 7
\end{array}\right)
\end{array}\right) \text { uspec }\left(\begin{array}{|llll}
5 & 0 & 0 & 0 \\
7 & 8 & 0 & 0 \\
5 & 6 \\
7 & 9 & 1 & 2 \\
0 & 3 \\
\hline
\end{array}\right) .
$$

Linear Algebra - Part 58

$\operatorname{spec}(A) \subseteq \mathbb{C} \quad$ (fundamental theorem of algebra)

$$
\rightarrow \text { consider } x \in \mathbb{C}^{n} \text { and } A \in \mathbb{C}^{n \times n}
$$

Definition: \mathbb{C}^{n} : column vectors with n entries from $\mathbb{C}\left(\binom{i+2}{1} \in \mathbb{C}^{2}\right)$ $\mathbb{C}^{m \times n}:$ matrices with $m \times n$ entries from $\mathbb{C}\left(\left(\begin{array}{cc}i & i-1 \\ 0 & 2\end{array}\right) \in \mathbb{C}^{2 \times 2}\right)$
Operations like before: $\binom{x_{1}}{x_{2}}+\binom{y_{1}}{y_{2}}:=\binom{x_{1}+y_{1}}{x_{2}+y_{2}}$ in \mathbb{C}

$$
\lambda \cdot\binom{x_{1}}{x_{2}}:=\binom{\lambda x_{1}}{\lambda x_{2}}
$$

Properties: The set \mathbb{C}^{n} together with,$+ \cdot$ is a complex vector space:
(a) $\left(\mathbb{C}^{n},+\right)$ is an abelian group:
(1) $u+(v+w)=(u+v)+w \quad$ (associativity of +)
(2) $v+0=v$ with $0=\left(\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right)$ (neutral element)
(3) $V+(-v)=0$ with $-V=\left(\begin{array}{c}-V_{1} \\ 1 \\ -V_{n}\end{array}\right)$ (inverse elements)
(4) $V+W=W+V$ (commutativity of +)
(b) scalar multiplication is compatible: $:: \mathbb{C} \times \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$
(5) $\lambda \cdot(\mu \cdot V)=(\lambda \cdot \mu) \cdot V$
(b) $1 \cdot v=v$
(c) distributive laws:
(7) $\lambda \cdot(v+w)=\lambda \cdot v+\lambda \cdot w$
(8) $(\lambda+\mu) \cdot v=\lambda \cdot v+\mu \cdot v$
\leadsto same notions: subspace, span, linear independence, basis, dimension,...

Remember:

$$
\begin{aligned}
& e_{1}=\left(\begin{array}{l}
1 \\
0 \\
\vdots \\
0
\end{array}\right), e_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \cdots, e_{n}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right) \text { basis of } \mathbb{C}^{n} \\
& \Longrightarrow \operatorname{dim}\left(\mathbb{C}^{n}\right)=n \\
&\left(\operatorname{dim}\left(\mathbb{C}^{1}\right)=1\right) \mathbb{C} \\
&\left(\begin{array}{c}
\\
\end{array}\right)
\end{aligned}
$$

standard inner product: $u, v \in \mathbb{C}^{n}:\langle u, v\rangle=\bar{u}_{1} \cdot v_{1}+\bar{u}_{2} \cdot v_{2}+\cdots+\bar{u}_{n} \cdot v_{n}$

$$
\begin{aligned}
& \text { standard norm } \rightarrow\|u\|=\sqrt{\langle u, u\rangle}=\sqrt{\left|u_{1}\right|^{2}+\cdots+\left|u_{n}\right|^{2}} \\
& \text { Example: }\left\|\binom{i}{-1}\right\|=\sqrt{|i|^{2}+|-1|^{2}}=\sqrt{2}
\end{aligned}
$$

Linear Algebra - Part 59

Recall: in $\mathbb{R}^{n}:\langle x, y\rangle=\sum_{k=1}^{n} x_{k} y_{k}$
in $\mathbb{C}^{n}:\langle x, y\rangle=\sum_{k=1}^{n} \overline{\bar{x}_{k}} y_{k}$
in $\mathbb{R}^{n}:\langle x, A y\rangle=\left\langle A^{\top} x, y\right\rangle$

$$
\sum_{k=1}^{n} x_{k}^{\prime \prime}\left(A y_{k}=\sum_{\substack{k=1 \\ j=1}}^{n} x_{k} a_{k j} y_{j}=\sum_{\substack{k=1 \\ j=1}}^{n}\left(A_{j k}\right)^{2} x_{k} y_{j}\right.
$$

in $\left.\mathbb{C}^{n}:\langle x, A y\rangle=\sum_{\substack{k=1 \\ j=1}}^{n} \overline{x_{k}} a_{k j} y_{j}=\sum_{\substack{k=1 \\ j=1}}^{n} a_{k j} \overline{\bar{x}_{k}} y_{j}=\sum_{\substack{k=1 \\ j=1}}^{n} \overline{\left(A_{j}\right)_{j k}} x_{k}\right) y_{j}$

$$
=\left\langle A^{*} x, y\right\rangle
$$

Definition: For $A \in \mathbb{C}^{m \times n}$ with $A=\left(\begin{array}{cccc}a_{n 1} & a_{12} & a_{13} & \cdots \\ a_{12} & & \\ \vdots & \cdots & & \\ \vdots & & & \\ a_{\text {mn }}\end{array}\right)$,

$$
A^{*}=\left(\begin{array}{cccc}
\overline{a_{41}} & \overline{a_{21}} & \cdots & \overline{a_{m 1}} \\
\frac{a_{n}}{1} & \ddots & \vdots \\
\vdots & \cdots & \overline{a_{m n}}
\end{array}\right) \in \mathbb{C}^{n \times m}
$$

is called the adjoint matrix/ conjugate transpose/ Hermitian conjugate.

Examples:
(a) $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \Rightarrow A^{*}=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$
(b) $A=\left(\begin{array}{ccc}i & 1+i & 0 \\ 2 & e^{-i} & 1-i\end{array}\right) \Rightarrow A^{*}=\left(\begin{array}{cc}-i & 2 \\ 1-i & e^{i} \\ 0 & 1+i\end{array}\right)$

Remember:
in $\mathbb{R}^{n}:\langle x, y\rangle=x^{\top} y$ (standard inner product)
in $\mathbb{C}^{n}:\langle x, y\rangle=x^{*} y \quad$ (standard inner product)

Proposition:
$\operatorname{spec}\left(A^{*}\right)=\{\bar{\lambda} \mid \lambda \in \operatorname{spec}(A)\}$

Linear Algebra - Part 60

Definition: A complex matrix $A \in \mathbb{C}^{n \times n}$ is called:
(1) selfadjoint if $A^{*}=A$
(2) skew-adjoint $A^{*}=-A$
(3) unitary if $A^{*} A=A A^{*}=\mathbb{1}$ (=identity matrix)
(4) normal if $A^{*} A=A A^{*}$

Example:
(a) $A=\left(\begin{array}{cc}1 & 2 i \\ -2 i & 0\end{array}\right) \Rightarrow A^{*}=\left(\begin{array}{cc}\overline{1} & \overline{-2 i} \\ \overline{2 i} & \overline{0}\end{array}\right)=\left(\begin{array}{cc}1 & 2 i \\ -2 i & 0\end{array}\right)=A$
(b) $A=\left(\begin{array}{cc}i & -1+2 i \\ 1+2 i & 3 i\end{array}\right) \Rightarrow A^{*}=\left(\begin{array}{cc}\bar{i} & \overline{1+2 i} \\ \overline{-1+2 i} & \overline{3 i}\end{array}\right)=\left(\begin{array}{cc}-i & 1-2 i \\ -1-2 i & -3 i\end{array}\right)=-A$
(c) $A=\left(\begin{array}{ll}i & 0 \\ 0 & 4\end{array}\right)$ not selfadoint nor skew-adjoint but normal.

Remember:

$A \in \mathbb{C}^{n \times n}$	$A \in \mathbb{R}^{n \times n}$
adjoint A^{*}	transpose A^{\top}
selfadjoint	symmetric
skew-adjoint	skew-symmetric
unitary	orthogonal

Proposition:
(a) A selfadjoint $\Rightarrow \operatorname{spec}(A) \subseteq$ real axis

(b) A skew-adjoint $\Rightarrow \operatorname{spec}(A) \subseteq$ imaginary axis
(c) A unitary $\Rightarrow \operatorname{spec}(A) \subseteq$ unit circle

Proof:
(a) $\lambda \in \operatorname{spec}(A) \Rightarrow$ eigenvalue equation $A x=\lambda x, \quad x \neq 0, \begin{aligned} & \text { choose: } \\ & \|x\|=1\end{aligned}$

(c) $\lambda \in \operatorname{spec}(A) \Rightarrow$ eigenvalue equation $A x=\lambda x, \quad x \neq 0,\|x\|=1$

$$
\begin{aligned}
& \langle\lambda x, \lambda x\rangle=\langle A x, A x\rangle=\langle\underbrace{A_{\mathbb{1}}^{*} A}_{\|} x, x\rangle=\langle x, x\rangle=1 \\
& \bar{\lambda} \cdot \lambda\langle x, x\rangle=|\lambda|^{2} \Rightarrow \lambda \text { lies on the unit circle }
\end{aligned}
$$

Linear Algebra - Part 61
Definition: $A, B \in \mathbb{C}^{n \times n}$ are called similar if there is an invertible $S \in \mathbb{C}^{n \times n}$ such that $A=S^{-1} B S$.

$$
\begin{gathered}
\text { (For similiar matrices: } f_{A} \text { injective } \Leftrightarrow f_{B} \text { injective) } \\
\text { (For similiar matrices: } f_{A} \text { surjective } \Leftrightarrow f_{B} \text { surjective) } \\
\end{gathered}
$$

Property: Similar matrices have the same characteristic polynomial.
Hence: A, B similar $\Rightarrow \operatorname{spec}(A)=\operatorname{spec}(B)$
Proof:

$$
\begin{aligned}
& P_{A}(\lambda)=\operatorname{det}(A-\lambda \mathbb{1})=\operatorname{det}\left(S^{-1} B S-\lambda \mathbb{1}\right)=\operatorname{det}\left(S^{-1}(B-\lambda \mathbb{1}) S\right) \\
&=\operatorname{det}\left(S^{-1}\right) \operatorname{det}(B-\lambda \mathbb{1}) \operatorname{det}(S)=P_{B}(\lambda) \\
&=\operatorname{det}(\mathbb{1})=1
\end{aligned}
$$

Later: $-A$ normal $\Rightarrow A=S^{-1}\left(\begin{array}{llll}\lambda_{1} & & \\ & & \\ & & \\ & & \lambda_{n}\end{array}\right) S \quad$ (eigenvalues on the diagonal)

- $A \in \mathbb{C}^{n \times n} \Rightarrow A=S^{-1}\left(\begin{array}{lll}\lambda_{1} & (*) \\ & & (*) \\ & \ddots & \\ & & \lambda_{n}\end{array}\right) S \quad$ (eigenvalues on the diagonal)

Linear Algebra - Part 62

Recall: $\alpha(\lambda)$ algebraic multiplicity
$\gamma(\lambda)$ geometric multiplicity $(=$ dimension of Eig $(\lambda))$
Recipe: $A \in \mathbb{C}^{n \times n}:(1)$ Calculate the zeros of $p_{A}(\lambda)=\operatorname{det}(A-\lambda \mathbb{1})$.

$$
\text { call them } \lambda_{1}, \ldots, \lambda_{k} \text {, }
$$

$$
\text { with } \underbrace{\alpha\left(\lambda_{1}\right), \ldots, \alpha\left(\lambda_{k}\right)} \text {. }
$$

$$
\left[A \in \mathbb{R}^{n \times n}, \quad \lambda_{j} \text { zero of } p_{A} \Rightarrow \bar{\lambda}_{j} \text { zero of } p_{A}\right]
$$

(2) For $j \in\{1, \ldots, k\}$: Solve LES $\left(A-\lambda_{j} \mathbb{1}\right) x=0$

$$
\text { Solution set: } \operatorname{Eig}\left(\lambda_{j}\right) \text { (eigenspace) }
$$

(3) All eigenvectors:

$$
\bigcup_{j=1}^{k} \operatorname{Eig}\left(\lambda_{j}\right) \backslash\{0\}
$$

Example:

$$
A=\left(\begin{array}{ccc}
8 & 8 & 4 \\
-1 & 2 & 1 \\
-2 & -4 & -2
\end{array}\right) \quad \text { (1) } p_{A}(\lambda)=\operatorname{det}\left(\begin{array}{ccc}
8-\lambda & 8 & 4 \\
-1 & 2-\lambda & 1 \\
-2 & -4 & -2-\lambda
\end{array}\right)
$$

$$
p_{A}(\lambda)=-\lambda^{1}(\lambda-4)^{2}
$$

eigenvalues:

$$
\begin{aligned}
& \lambda_{1}=0, \alpha\left(\lambda_{1}\right)=1 \\
& \lambda_{2}=4, \alpha\left(\lambda_{2}\right)=2
\end{aligned}
$$

$$
\begin{aligned}
\text { Sarrus } & (8-\lambda)(2-\lambda)(-2-\lambda)+16-16 \\
& +8(2-\lambda)+4(8-\lambda)+8(-2-\lambda) \\
= & (8-\lambda)\left(-4+\lambda^{2}\right)+16-8 \lambda+32-4 \lambda \\
& -16-8 \lambda \\
= & (8-\lambda)\left(-4+\lambda^{2}\right)-20 \lambda+32 \\
= & -32+4 \lambda+8 \lambda^{2}-\lambda^{3}-20 \lambda+32 \\
= & \lambda\left(-\lambda^{2}+8 \lambda-16\right)=-\lambda(\lambda-4)^{2}
\end{aligned}
$$

(2) eigenspace for $\lambda_{1}=0$
eigenspace for $\lambda_{2}=4$

$$
\operatorname{Eig}\left(\lambda_{2}\right)=\operatorname{Ker}\left(A-\lambda_{2} \mathbb{1}\right)=\operatorname{Ker}\left(\begin{array}{ccc}
4 & 8 & 4 \\
-1 & -2 & 1 \\
-2 & -4 & -6
\end{array}\right) \stackrel{\operatorname{Ic} \mathbb{I}}{=} \operatorname{Ker}\left(\begin{array}{ccc}
-1 & -2 & 1 \\
4 & 8 & 4 \\
-2 & -4 & -6
\end{array}\right)
$$

$$
\stackrel{\frac{I}{I}+4 I}{\mathbb{I I}-2 I} \operatorname{Ker}\left(\begin{array}{ccc}
-1 & -2 & 1 \\
0 & 0 & 0 \\
0 & 0 & -8
\end{array}\right) \stackrel{\substack{\text { exchange } \\
\text { soale }}}{=} \operatorname{Ker}\left(\begin{array}{rrr}
-1 & -2 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=\operatorname{span}\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)
$$

(3) eigenvectors of $A:\left(\operatorname{span}\left(\begin{array}{c}0 \\ -1 \\ 2\end{array}\right) \cup \operatorname{span}\left(\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right)\right) \backslash\{0\}$

$$
\begin{aligned}
& \operatorname{Eig}\left(\lambda_{1}\right)=\operatorname{Ker}\left(A-\lambda_{1} \mathbb{1}\right)=\operatorname{Ker}\left(\begin{array}{ccc}
8 & 8 & 4 \\
-1 & 2 & 1 \\
-2 & -4 & -2
\end{array}\right) \stackrel{\operatorname{Ir} \mathbb{I}}{=} \operatorname{Ker}\left(\begin{array}{ccc}
-1 & 2 & 1 \\
8 & 8 & 4 \\
-2 & -4 & -2
\end{array}\right) \\
& \frac{\mathbb{I}+8 I}{\frac{\mathbb{I}-2 I}{I I I+\frac{1}{3} I} \mathbb{I}} \operatorname{Ker}\left(\begin{array}{ccc}
-1 & 2 & 1 \\
\hline 0 & 24 & 12 \\
0 & 0 & 0
\end{array}\right)=\left\{\left.\left(\begin{array}{c}
0 \\
-\frac{1}{2} t \\
t
\end{array}\right) \right\rvert\, t \in \mathbb{C}\right\}=\operatorname{span}\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right)
\end{aligned}
$$

Linear Algebra - Part 63

Assume: x eigenvector for $A \in \mathbb{C}^{n \times n}$ associated to eigenvalue $\lambda \in \mathbb{C}$

$$
\Rightarrow A^{2} x=\lambda^{2} x \Rightarrow A^{3} x=\lambda^{3} x
$$

induction

$$
\Rightarrow A^{m} x=\lambda^{m} x \quad \text { for all } \quad m \in \mathbb{N}
$$

spectral mapping theorem: $A \in \mathbb{C}^{n \times n}, p: \mathbb{C} \longrightarrow \mathbb{C}, p(z)=C_{m} z^{m}+\cdots+C_{1} z^{1}+C_{0}$
Define: $\quad p(A)=C_{m} A^{m}+C_{m-1} A^{m-1}+\cdots+C_{1} A+C_{0} \cdot \mathbb{1}_{n} \in \mathbb{C}^{n \times n}$
Then: $\quad \operatorname{spec}(p(A))=\{p(\lambda) \mid \lambda \in \operatorname{spec}(A)\}$

Proof: Show two inclusion: (\geq) (see above)
(\subseteq) ist case: p constant, $p(z)=C_{0}$.
Take $\tilde{\lambda} \in \operatorname{spec}(p(A)) \Rightarrow \underbrace{\mathbb{N}}_{\left(c_{0}-\tilde{\lambda}\right)^{n}} \underbrace{p(A)}_{c_{0} \mathbb{1}}-\tilde{\lambda} \mathbb{1})=0$

$$
\Rightarrow \widetilde{\lambda} \in\{p(\lambda) \mid \lambda \in \operatorname{spec}(A)\} \checkmark
$$

2nd case: p not constant. Do proof by contraposition.
Assume: $\mu \notin\{p(\lambda) \mid \lambda \in \operatorname{spec}(A)\}$

$$
\text { Define polynomial: } \begin{aligned}
& q(z)= p(z)-\mu \\
&=C \cdot\left(z-a_{1}\right)\left(z-a_{2}\right) \cdots\left(z-a_{m}\right) \\
& x_{0} \\
& \text { By definition of } \mu: \quad a_{j} \notin \operatorname{spec}(A) \quad \text { for all } j \\
& \Rightarrow \operatorname{det}\left(A-a_{j} \mathbb{1}\right) \neq 0 \quad \text { for all } j
\end{aligned}
$$

Hence: $\operatorname{det}(p(A)-\mu \mathbb{1})=\operatorname{det}(q(A))$

$$
\begin{aligned}
& =\operatorname{det}\left(C \cdot\left(A-a_{1}\right)\left(A-a_{2}\right) \cdots\left(A-a_{m}\right)\right) \\
& =C^{n} \cdot \operatorname{det}\left(A-a_{1}\right) \operatorname{det}\left(A-a_{2}\right) \cdots \operatorname{det}\left(A-a_{m}\right) \\
& \neq 0
\end{aligned}
$$

$$
\Rightarrow \mu \notin \operatorname{spec}(p(A))
$$

Example: $A=\left(\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right), \quad \operatorname{spec}(A)=\{1,4\}$

$$
B=3 A^{3}-7 A^{2}+A-21, \quad \operatorname{spec}(B)=\{-5,82\}
$$

Linear Algebra - Part 64

Diagonalization $=$ transform matrix into a diagonal one

$=$ find a an optimal coordinate system

Example:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right), \quad \lambda_{1}=4, \quad \lambda_{2}=1 \quad \text { (eigenvalues) } \\
& x=\binom{2}{1}, y=\binom{1}{-1}
\end{aligned} \text { (eigenvectors) }
$$

$$
\alpha x+\beta y \quad \longmapsto \quad \alpha \lambda_{1} x+\beta \lambda_{2} y
$$

Diagonalization: $A \in \mathbb{C}^{n \times n} \leadsto \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \quad$ (counted with algebraic multiplicities)

$$
\leadsto x^{(1)}, x^{(2)}, \ldots, x^{(n)} \quad \text { (associated eigenvectors) }
$$

$$
\leadsto A x^{(1)}=\lambda_{1} x^{(1)}, \ldots, A x^{(n)}=\lambda_{n} x^{(n)} \quad \begin{array}{r}
(\text { eigenvalue } \\
\text { equations) }
\end{array}
$$

$$
A\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
x^{(1)} & x^{(2)} & \cdots & x^{(n)} \\
\mid & \mid & & \mid
\end{array}\right)=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
A x^{(1)} & A x^{(2)} & \cdots & A x^{(n)} \\
\mid & \mid &
\end{array}\right)
$$

$$
=\left(\begin{array}{cccc}
\mid & & & \\
\lambda_{1} x^{(1)} & \lambda_{2} x^{(2)} & \ldots & \lambda_{\lambda_{n} x^{(n)}} \\
\mid & \mid & & \mid
\end{array}\right)=\underbrace{\left(\begin{array}{llll}
\mid & & & \mid \\
x^{(1)} & x^{(2)} \ldots & x^{(n)} \\
\mid & \mid & \mid
\end{array}\right)}_{X} \underbrace{\left(\begin{array}{llll}
\lambda_{1} & & \\
& & & \\
& \lambda_{2} & \\
& & \ddots & \\
& & \lambda_{n}
\end{array}\right)}_{D}
$$

$$
\Rightarrow \quad A X=X D
$$

If X is invertible, then:

$$
D=X^{-1} A X
$$

A is similar to a diagonal matrix

Application:

$$
\begin{aligned}
A^{98} & =\left(X D X^{-1}\right)^{98}=X D \underbrace{X^{-1} X D \underbrace{X^{-1}}_{\mathbb{1}} \times D X^{-1} \cdots X D X^{-1}}_{\mathbb{1}} \begin{array}{l}
\\
\end{array}=X D^{98} X^{-1} \\
& =X\left(\begin{array}{ll}
\lambda_{1}^{98} & \lambda_{28}^{98} \\
&
\end{array}\right) X^{-1}
\end{aligned}
$$

Linear Algebra - Part 65

canonical basis:

eigenvector basis:

$$
D=X^{-1} A X
$$

Is that possible? For given matrix $A \in \mathbb{C}^{n \times n}$ with eigenvectors $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$:

- Can we express each $u \in \mathbb{C}^{n}$ with $\alpha_{1} x^{(1)}+\alpha_{2} x^{(2)}+\cdots+\alpha_{n} x^{(n)}$?
- $\operatorname{span}\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)=\mathbb{C}^{n}$?
- $\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)$ basis of \mathbb{C}^{n} ?
- $X=\left(\begin{array}{ccc}\mid & \mid & \mid \\ x^{(1)} & x^{(2)} & \ldots \\ \mid & x^{(n)} \\ \mid & & \mid\end{array}\right)$ invertible ?

Definition: $A \in \mathbb{C}^{n \times n}$ is called diagonalizable if one can find n eigenvectors of A such that they form a basis \mathbb{C}^{n}.

Example:
(a) $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right), \quad e_{1}, e_{2}$ eigenvectors $\Rightarrow A$ is diagonalizable
(b)

$$
B=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right),\binom{1}{0},\binom{1}{1} \text { eigenvectors } \Rightarrow B \text { is diagonalizable }
$$

(c)

$$
C=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \text { all eigenvectors lie in direction }\binom{1}{0} \Rightarrow C \underset{\text { diagonalizable }}{C \text { is not }}
$$

Remember: For $A \in \mathbb{C}^{n \times n}$:

- $\alpha(\lambda)=\gamma(\lambda)$ for all eigenvalues $\lambda \Leftrightarrow A$ is diagonalizable
- A normal $\Rightarrow A$ is diagonalizable (One can choose even an ONB with eigenvectors)
- A has n different eigenvalues $\Rightarrow A$ is diagonalizable

