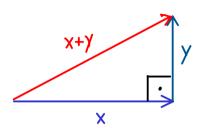


Hilbert Spaces - Part 7



choose x, y orthogonal: $\langle x, y \rangle = 0$

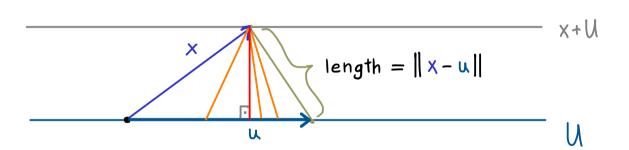
Pythagorean theorem: $(X, \langle \cdot, \cdot \rangle)$ inner product space with induced norm $\|\cdot\|$.

For any $x, y \in X$ with $X \perp y$, we have:

$$\|x+y\|^{2} = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle + \langle y, y \rangle$$

$$= \|x\|^{2} + \|y\|^{2}$$

Approximation Formula



distance between x+U and U: inf $\|x-u\|$ | $u \in U$ =: dist(x,U)

Theorem: Let $(X, \langle \cdot, \cdot \rangle)$ be a Hilbert space, $U \subseteq X$ be closed and convex.

a unique best approximation:

$$x_{lu} \in U$$

For every $X \in X$ there exists \longrightarrow each connection line between two points u, vel lies not convex

 $\|x - x_{|_{\mathbf{U}}}\| = \operatorname{dist}(x, \mathbf{U})$ This means: