The Bright Side of Mathematics

Hilbert Spaces - Part 7

Pythagorean theorem: $(X, \langle \cdot, \cdot \rangle)$ inner product space with induced norm $\| \cdot \|$. For any $x, y \in X$ with $X \perp y$, we have:

 $\|x+y\|^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle + \langle y, y \rangle$ $= \|x\|^2 + \|y\|^2$

$$= \|x\|^{2} + \|y\|^{2}$$
Approximation Formula
$$= \|x\|^{2} + \|y\|^{2}$$

$$= \|x\|^{2} + \|y\|^{2}$$

$$= \|x\|^{2} + \|y\|^{2}$$

 $x_{lu} \in U$ This means: $\|x - x_{|_{\mathcal{U}}}\| = dist(x, \emptyset)$

Theorem: Let $(X, \langle \cdot, \cdot \rangle)$ be a <u>Hilbert space</u>, $U \subseteq X$ be <u>closed</u> and <u>convex</u>.

For every $X \in X$ there exists a unique best approximation: U each connection line between two points $u, v \in U$ lies completely in U

not convex