

Hilbert Spaces - Part 6

 $\begin{array}{c} (X,\langle\cdot,\cdot\rangle) \\ \Rightarrow \text{ gives geometry to vector space } X \\ \Rightarrow \text{ we can measure lengths: } \|x\| := \sqrt{\langle x, x \rangle} \\ \Rightarrow \text{ we can measure angles / orthogonality} \end{array}$

<u>Definition:</u> $(X, \langle \cdot, \cdot \rangle)$ inner product space.

- (1) $x \in X$ is orthogonal to $y \in X$ if $\langle x, y \rangle = 0$. Write $X \perp y$.
- (2) $x \in X$ is called <u>orthogonal</u> to $A \subseteq X$ if $\langle x, a \rangle = 0$ for all $a \in A$. We write $x \perp A$.

- (3) $\mathcal{B} \subseteq X$ is called <u>orthogonal</u> to $A \subseteq X$ if $\langle b, a \rangle = 0$ for all $b \in \mathcal{B}$ We write $\mathcal{B} \perp A$.
- (4) The orthogonal complement of $A \subseteq X$ is defined by:

<u>Properties</u>: $(X, \langle \cdot, \cdot \rangle)$ inner product space, $A \subseteq X$.

- (a) \bigwedge^{\perp} is a subspace in X.
- (b) A^{\perp} is closed in X (complement $X \setminus A^{\perp}$ is an open set)
- (c) $A^{\perp} = \overline{A}^{\perp}$
- (d) $A^{\perp} = Span(A)^{\perp}$

Proof: (a) $x,y \in A^{\perp}$, $a \in A$, $\lambda \in \mathbb{F}$ $\Rightarrow \langle x+y, a \rangle = \langle x, a \rangle + \langle y, a \rangle = 0$ $\langle 0, a \rangle = 0$ $\langle \lambda \cdot x, a \rangle = \overline{\lambda} \cdot \langle x, a \rangle = 0 \implies A^{\perp} \text{ subspace in } X.$

(b) Take
$$(x_n)_{n \in \mathbb{N}} \subseteq A^{\perp}$$
 with $x_n \xrightarrow{n \to \infty} x \in X$.

For any $a \in A$:

 $0 = \lim_{n \to \infty} \langle x_n, a \rangle = \langle \lim_{n \to \infty} x_n, a \rangle = \langle x, a \rangle \implies x \in A^{\perp}$

(c)
$$A \subseteq \overline{A} \implies A^{\perp} \supseteq \overline{A}^{\perp}$$

Other inclusion? (\subseteq) $\times \in A^{\perp}$, be \overline{A} , choose $(a_n) \subseteq A$ with $\lim_{n \to \infty} a_n = b$

$$\langle x, b \rangle = \langle x, \lim_{h \to \infty} a_h \rangle = \lim_{h \to \infty} \langle x, a_h \rangle = 0$$
inner product continuous

in both arguments

$$\Rightarrow \times \epsilon \overline{A}^{\perp}$$

(d) $A \subseteq Span(A) \implies A^{\perp} \supseteq Span(A)^{\perp}$

Other inclusion? (\subseteq) $x \in A^{\perp}$, $\sum_{j=1}^{n} \lambda_{j} \cdot a_{j} \in Span(A)$: $\left\langle x, \sum_{j=1}^{n} \lambda_{j} \cdot a_{j} \right\rangle = \sum_{j=1}^{n} \lambda_{j} \cdot \left\langle x, a_{j} \right\rangle = 0 \implies x \in Span(A)^{\perp}$