ON STEADY

 (X, \leq, \geq)
gives geometry to vector space X we can measure lengths:

we can measure angles / orthogonality

Definition: $(X,\langle\cdot,\cdot\rangle)$ inner product space.

- (1) $x \in X$ is <u>orthogonal</u> to $y \in X$ if $\langle x, y \rangle = 0$. Write $x \perp y$.
- (2) $x \in X$ is called <u>orthogonal</u> to $A \subseteq X$ if $\langle x, a \rangle = 0$ for all $a \in A$. We write $x \perp A$. $\frac{1}{2}$
- (3) \quad \leq \times is called orthogonal to \land \subseteq \times if for all for all We write $\beta \perp A$.
- (4) The orthogonal complement of $A \subseteq X$ is defined by:

Properties:	$(X, \langle \cdot, \cdot \rangle)$ inner product space, $A \subseteq X$.
(a) A^{\perp} is a subspace in X.	
(b) A^{\perp} is closed in X (complement $X \setminus A^{\perp}$ is an open set)	
(c) $A^{\perp} = \overline{A}^{\perp}$	
(d) $A^{\perp} = Span(A)^{\perp}$	
Proof:	(a) $x, y \in A^{\perp}$, $a \in A$, $\lambda \in \mathbb{F}$

$$
\Rightarrow \langle x+y, a \rangle = \langle x, a \rangle + \langle y, a \rangle = 0
$$

\n
$$
\langle 0, a \rangle = 0
$$

\n
$$
\langle x, a \rangle = \bar{x} \langle x, a \rangle = 0 \Rightarrow \int_{1}^{1} \text{ subspace in } X.
$$

\n(b) Take $(x_n)_{n \in \mathbb{N}} \subseteq A^{\perp}$ with $x_n \xrightarrow{n \to \infty} x \in X$.
\nFor any $a \in A$: $\lim_{n \to \infty} \text{ product continuous}$
\n
$$
0 = \lim_{n \to \infty} \langle x_n, a \rangle = \langle \lim_{n \to \infty} x_n, a \rangle = \langle x, a \rangle \Rightarrow x \in A^{\perp}
$$

\n(c) $A \subseteq \overline{A} \Rightarrow A^{\perp} \supseteq \overline{A}^{\perp}$
\nOther inclusion? $(\subseteq) x \in A^{\perp}$, $\oint_{\text{the } A} \text{ choose } (a_n) \subseteq A$ with $\lim_{n \to \infty} a_n = b$
\n
$$
\langle x, b \rangle = \langle x, \lim_{n \to \infty} a_n \rangle \sum_{n \to \infty} \lim_{n \to \infty} \langle x, a_n \rangle = 0
$$

\n
$$
\Rightarrow x \in \overline{A}^{\perp}
$$

\n(d) $A \subseteq \text{Span}(A) \Rightarrow A^{\perp} \supseteq \text{Span}(A)$
\nOther inclusion? $(\subseteq) x \in A^{\perp}$, $\sum_{j=1}^{n} \lambda_j \cdot a_j \in \text{Span}(A)$:
\n
$$
\langle x, \sum_{j=1}^{n} \lambda_j \cdot a_j \rangle = \sum_{j=1}^{n} \lambda_j \cdot \langle x, a_j \rangle = 0 \Rightarrow x \in \text{Span}(A)^{\perp}
$$