ON STEADY

 (X, \langle , \rangle) \Rightarrow gives geometry to vector space X> we can measure lengths: $||x|| := \sqrt{\langle x, x \rangle}$ > we can measure angles / orthogonality

<u>Definition:</u> $(X, \langle \cdot, \cdot \rangle)$ inner product space.

- (1) $x \in X$ is orthogonal to $y \in X$ if $\langle x, y \rangle = 0$. Write $x \perp y$.
- (2) $x \in X$ is called orthogonal to $A \subseteq X$ if $\langle x, a \rangle = 0$ for all $a \in A$. We write $X \perp A$.

A A

- (3) $B \subseteq X$ is called orthogonal to $A \subseteq X$ if $\langle b, a \rangle = 0$ for all $a \in A$ for all $b \in B$ We write $\mathcal{B} \perp \mathcal{A}$.
- (4) The orthogonal complement of $A \subseteq X$ is defined by:

<u>Properties</u>: $(X, \langle \cdot, \cdot \rangle)$ inner product space, $A \subseteq X$. (a) A^{\perp} is a subspace in X. (b) A^{\perp} is closed in X (complement $X \setminus A^{\perp}$ is an open set) (c) $A^{\perp} = \overline{A}^{\perp}$ (d) $A^{\perp} = \text{Span}(A)^{\perp}$ <u>Proof:</u> (a) $X, Y \in A^{\perp}$, $a \in A$, $\lambda \in \mathbb{F}$ $\Rightarrow \langle x + y, a \rangle = \langle x, a \rangle + \langle y, a \rangle = 0$

$$\langle 0, a \rangle = 0$$

$$\langle \lambda \times, a \rangle = \overline{\lambda} \langle \times, a \rangle = 0 \implies A^{\perp} \text{ subspace in } X.$$
(b) Take $(X_n)_{n \in \mathbb{N}} \subseteq A^{\perp}$ with $X_n \xrightarrow{n \to \infty} x \in X.$
For any $a \in A$:
$$\lim_{n \to \infty} \operatorname{product continuous}_{\text{in both arguments}} 0 = \lim_{n \to \infty} \langle x_n, a \rangle \stackrel{\checkmark}{=} \langle \lim_{n \to \infty} x_n, a \rangle = \langle x, a \rangle \implies x \in A^{\perp}$$
(c) $A \subseteq \overline{A} \implies A^{\perp} \supseteq \overline{A}^{\perp}$
Other inclusion? (c) $x \in A^{\perp}, b \in \overline{A}, \text{ choose } (a_n) \subseteq A \text{ with } \lim_{n \to \infty} a_n = b$

$$\langle x, b \rangle = \langle x, \lim_{n \to \infty} a_n \rangle \stackrel{\checkmark}{=} \lim_{n \to \infty} \langle x, a_n \rangle = 0$$

$$\lim_{n \to \infty} x \in \overline{A}^{\perp}$$
(d) $A \subseteq \operatorname{Span}(A) \implies A^{\perp} \supseteq \operatorname{Span}(A)^{\perp}$
Other inclusion? (c) $x \in A^{\perp}, \sum_{j=1}^{n} \lambda_j, a_j \in \operatorname{Span}(A)$:
$$\langle x, \sum_{j=1}^{n} \lambda_j, a_j \rangle = \sum_{j=1}^{n} \lambda_j, \langle x, a_j \rangle = 0 \implies x \in \operatorname{Span}(A)^{\perp}$$