The Bright Side of Mathematics

The following pages cover the whole Hilbert Spaces course of the Bright Side of Mathematics. Please note that the creator lives from generous supporters and would be very happy about a donation. See more here: [https://tbsom.de/support](https://thebrightsideofmathematics.com/support)

Have fun learning mathematics!

1

is called an inner-product space. (pre-Hilbert space)

Cauchy-Schwarz inequality: For an inner product space $(\chi, \langle \cdot, \cdot \rangle)$, we have:

$$
|\langle y, x \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle
$$
 for all $x, y \in X$

Proof: For
$$
y \neq 0
$$
:
\n
$$
0 \leq \left\langle x - \frac{\langle y, x \rangle}{\langle y, y \rangle}, y - \frac{\langle y, x \rangle}{\langle y, y \rangle}, y \right\rangle
$$
\n
$$
= \left\langle x, x \right\rangle - \frac{\overline{\langle y, x \rangle}}{\overline{\langle y, y \rangle}}, \left\langle y, x \right\rangle - \frac{\overline{\langle y, x \rangle}}{\overline{\langle y, y \rangle}}, \left\langle x, y \right\rangle
$$
\n
$$
+ \frac{\overline{\langle y, x \rangle}}{\overline{\langle y, y \rangle}}, \frac{\overline{\langle y, x \rangle}}{\overline{\langle y, y \rangle}}, \left\langle y, y \right\rangle
$$

$$
=\langle x,x\rangle - \frac{|\langle y,x\rangle|^2}{\langle y,y\rangle}
$$

 \Box

<u>Result:</u> $||x|| := \sqrt{\langle x, x \rangle}$ defines a <u>norm</u> on X

Definition: An inner product space $(X, \langle \cdot, \cdot \rangle)$ is called a Hilbert space if $(X, ||\cdot||)$ is complete.

Example:

The Bright Side of
Mathematics

$$
\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=
$$

Hilbert Spaces – Part 2		
Definition (Hilbert space):	$(X, \langle \cdot, \cdot \rangle)$	\mathbb{F} -vector space
$\langle \cdot, \cdot \rangle : X \times X \longrightarrow \mathbb{F}$ inner product		
where (X, \cdot) is a Banach space		
with respect to the norm $ x := \sqrt{\langle x, x \rangle}$		
nple: (a) \mathbb{C}^N with standard inner product		
(b) \mathbb{R}^n with given inner product		
(c) $\int_0^1 (\mathbb{N}, \mathbb{C}) := \sum_{n=1}^{\infty} \langle x_n \rangle_{n \in \mathbb{N}} X_n \in \mathbb{C}$ and $\sum_{n=1}^{\infty} x_n ^2 < \infty$		
with inner product: $\langle y, x \rangle = \sum_{n=1}^{\infty} \frac{1}{\gamma_n} \cdot x_n$ (convergent series)		
(d) $(\mathbb{L}, \mathbb{A}, \mu)$ measure space		
$\int_0^1 (\mathbb{L}, \mathbb{A}, \mu)$ measure space		
$\int_0^1 (\mathbb{L}, \mathbb{A}, \mu)$ measure a norm in general		
$\left \int_0^1 \mathbb{I} \right := \left \int_0^1 \mathbb{I} \int_0^1 \mathbb{A} \mu$ not a norm in general		
$\left \int_0^1 (\mathbb{L}, \mu) \right := \left \int_0^1 \mathbb{I} \int_0^1 \mathbb{I} \mu \right $ and a norm in general		
$\left \int_0^1 (\mathbb{L}, \mu) \right := \left \int_0^1 \mathbb{I} \int_0^1 \mathbb{I} \mu \right $ where $\mathbb{N} := \left\$		

$$
\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=
$$

Hilbert Spaces - Part 3

 $(X, \langle \cdot, \cdot \rangle)$ inner product space $(\mathbb{F}-\text{vector space} + \text{inner product})$ normed space with

norm induced by inner product

Polarization identity: (for case $F = \mathbb{C}$)

 $(X, \langle \cdot, \cdot \rangle)$ inner product space with induced norm $\| \cdot \|$. Then, for all $X, \gamma \in X$:

$$
\langle x, y \rangle = \frac{1}{4} (||x + y||^2 - ||x - y||^2 - i ||x + iy||^2 + i ||x - iy||^2)
$$

inner product is linear in the second argument

$$
\frac{\text{Proof:}}{\|x+y\|^2} = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle + \langle y, y \rangle
$$

\n
$$
-\|x-y\|^2 = -\langle x-y, x-y \rangle = -\langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle - \langle y, y \rangle
$$

\n
$$
-i \|x+iy\|^2 = -i \langle x+iy, x+iy \rangle = -i \langle x, x \rangle - \langle y, x \rangle + \langle x, y \rangle - i \langle y, y \rangle
$$

\n
$$
i \|x-iy\|^2 = i \langle x-iy, x-iy \rangle = i \langle x, x \rangle - \langle y, x \rangle + \langle x, y \rangle + i \langle y, y \rangle
$$

Polarization identity: (for case $F = \mathbb{R}$) $\langle x, y \rangle = \frac{1}{4} (||x+y||^2 - ||x-y||^2)$ for all $x, y \in X$.

Hilbert Spaces - Part 4 $(X,\langle\cdot,\cdot\rangle)$ inner product space $(\mathbb{F}$ -vector space + inner product) $\left\| \chi \right\|_{\langle \cdot, \cdot \rangle} := \sqrt{\langle \times, \times \rangle}$ induced norm We get: $\left\| \times + \gamma \right\|_{\left\langle ., \right\rangle}^{2} + \left\| \times - \gamma \right\|_{\left\langle ., \right\rangle}^{2}$ = $\langle x+y,x+y \rangle + \langle x-y,x-y \rangle$ $\overline{\mathsf{X}}$ = $\langle x,x\rangle$ + $\langle y,x\rangle$ + $\langle x,y\rangle$ + $\langle y,y\rangle$ + $\langle x,x\rangle$ - $\langle y,x\rangle$ - $\langle x,y\rangle$ + $\langle y,y\rangle$ = 2 $\|x\|_{\langle x,\rangle}^2$ + 2 $\|y\|_{\langle x,\rangle}^2$ (parallelogram law) $+\sqrt{2}$ = 2. $\sqrt{1}$ 2. $\left\| x+y \right\|_{\langle .,\rangle}^{2} + \left\| x-y \right\|_{\langle .,\rangle}^{2} = 2 \left\| x \right\|_{\langle .,\rangle}^{2} + 2 \left\| y \right\|_{\langle .,\rangle}^{2}$ Proposition: Let $(X, \|\cdot\|)$ be a normed space. Then: the parallelogram law is satisfied $(\forall x,y \in X: ||x+y||^2 + ||x-y||^2 = 2.||x||^2 + 2.||y||^2)$ is induced by an inner product on next videoIn this case: $\langle x, y \rangle := \frac{1}{4} (||x+y||^2 - ||x-y||^2)$ for $F = R$ $\langle x, y \rangle := \frac{1}{4} (||x + y||^2 - ||x - y||^2 - i ||x + iy||^2 + i ||x - iy||^2)$ for $F = \mathbb{C}$ gives the inner product on X .

Remember: A Hilbert space is a Banach space where the parallelogram law holds.

Hilbert Spaces - Part 5

 $Jordan-von Neumann Theorem: Let $(X, \|\cdot\|)$ be a normed space. Then:$ the parallelogram law is satisfied $(y_{x,y\in}X:\|x+y\|^2+\|x-y\|^2=2\|x\|^2+2\|y\|^2$ \Rightarrow $\|\cdot\|$ is induced by an inner product on λ (there is an inner product $\langle \cdot, \cdot \rangle$ on X such that $||x|| := \sqrt{\langle x, x \rangle}$ \bigcup In this case: $\langle x, y \rangle := \frac{1}{4} (||x+y||^2 - ||x-y||^2)$ for $F = \mathbb{R}$ $\langle x, y \rangle := \frac{1}{4} (||x + y||^2 - ||x - y||^2 - i ||x + iy||^2 + i ||x - iy||^2)$ gives the inner product on X . For $F = \mathbb{C}$ <u>Proof:</u> Consider case $F = R$. So we define: $\langle x, y \rangle := \frac{1}{4} (||x+y||^2 - ||x-y||^2)$. To show three properties: (1) positive definite (2) linear in the second argument (3) symmetry (1): $\langle x, x \rangle = \frac{1}{4} (||x + x||^2 - ||x - x||^2) = \frac{1}{4} ||2 \times ||^2 = ||x||^2 \ge 0$ and $\langle x, x \rangle = 0 \implies x = 0$ (3): $\langle y, x \rangle = \frac{1}{4} (||y + x||^2 - ||y - x||^2) = \frac{1}{4} (||x + y||^2 - ||x - y||^2) = \langle x, y \rangle$ (2) linearity: $\left\| \mathbf{w}\right\|$ we will use: $\left\| \mathbf{X} + \mathbf{y} \right\|^2 + \left\| \mathbf{X} - \mathbf{y} \right\|^2 = 2 \cdot \left\| \mathbf{X} \right\|^2 + 2 \cdot \left\| \mathbf{y} \right\|^2$ First step: $\langle w, z \rangle = \frac{1}{4} (||w+z||^2 - ||w-z||^2)$ $= \frac{1}{4} \left(\left\| \frac{1}{2} + \frac{1}{2} \right\|^2 + \left\| \frac{1}{2} \right\|^2 - \left(\left\| \frac{1}{2} \right\|^2 + \left\| \frac{1}{2} \right\|^2 \right) \right)$

parallelogram

law
 $\sqrt{x} + \sqrt{x}$
 $\sqrt{x} - \sqrt{x}$ law $\frac{\nu}{4} \left(2 \left\| \chi \right\|^2 + 2 \left\| \chi \right\|^2 - \left(2 \left\| \widetilde{\chi} \right\|^2 + 2 \left\| \widetilde{\chi} \right\|^2 \right) \right)$ = $\frac{1}{2}$ $\left(\left\| x \right\|^2 - \left\| \hat{x} \right\|^2 \right) = \frac{1}{2} \left(\left\| x + \frac{1}{2} z \right\|^2 - \left\| x - \frac{1}{2} z \right\|^2 \right)$ $= 2\left\langle w, \frac{1}{2}z\right\rangle$

First result:
$$
\frac{1}{2}\langle\vec{v}, \vec{z}\rangle = \langle\vec{v}, \frac{1}{2}\vec{z}\rangle
$$
 $\frac{\text{induction}}{\text{ne N}} \left| \frac{1}{2}, \langle\vec{v}, \vec{z}\rangle = \langle\vec{v}, \frac{1}{2}\vec{z}\rangle \right|$
\n
$$
\frac{\text{Additionally: } \langle\vec{v}, \vec{z}\rangle + \langle\vec{v}, \hat{\vec{z}}\rangle}{\left| \frac{1}{4} \left(\|\vec{v} + \vec{z}\|^2 - \|\vec{v} - \vec{z}\|^2 \right) \right|} + \frac{1}{4} \left(\|\vec{v} + \hat{\vec{z}}\|^2 - \|\vec{v} - \hat{\vec{z}}\|^2 \right)
$$
\n
$$
= \frac{1}{4} \left(\|\vec{v} + \frac{2 + \hat{\vec{z}}}{L} + \frac{2 - \hat{\vec{z}}}{L} \|^2 + \|\vec{v} + \frac{2 + \hat{\vec{z}}}{L} - \frac{2 - \hat{\vec{z}}}{L} \|^2 \right)
$$
\n
$$
= \frac{1}{4} \left(\frac{1}{L} \cdot \|\vec{v} + \frac{2 + \hat{\vec{z}}}{L} \|^2 + \frac{1}{L} \cdot \frac{2 - \hat{\vec{z}}}{L} \|^2 + \left| \frac{1}{L} \cdot \frac{2 + \hat{\vec{z}}}{L} \right|^2 + \left| \frac{1}{L} \cdot \frac{2 + \hat{\vec{z}}}{L} \right|^2 \right)
$$
\n
$$
= \frac{1}{4} \left(\frac{1}{L} \cdot \|\vec{v} + \frac{2 + \hat{\vec{z}}}{L} \|^2 + 2 \cdot \|\frac{2 - \hat{\vec{z}}}{L} \|^2 - \left(2 \cdot \|\vec{v} - \frac{2 + \hat{\vec{z}}}{L} \|^2 + 2 \cdot \|\frac{2 - \hat{\vec{z}}}{L} \|^2 \right) \right)
$$
\n
$$
= \frac{1}{2} \left(\|\vec{v} + \frac{2 + \hat{\vec{z}}}{L} \|^2 - \|\vec{v} - \frac{2 + \hat{\vec{z}}}{L} \|^2 \right) = 2 \left\langle \vec{v}, \frac{2 + \hat{\vec{z}}}{L} \right\rangle
$$
\n $$

 (X, \leq, \geq)
gives geometry to vector space X we can measure lengths:

we can measure angles / orthogonality

Definition: $(X,\langle\cdot,\cdot\rangle)$ inner product space.

- (1) $x \in X$ is <u>orthogonal</u> to $y \in X$ if $\langle x, y \rangle = 0$. Write $x \perp y$.
- (2) $x \in X$ is called <u>orthogonal</u> to $A \subseteq X$ if $\langle x, a \rangle = 0$ for all $a \in A$. We write $x \perp A$. $\frac{1}{2}$
- (3) \quad \leq \times is called orthogonal to \land \subseteq \times if for all for all We write $\beta \perp A$.
- (4) The orthogonal complement of $A \subseteq X$ is defined by:

Properties:	$(X, \langle \cdot, \cdot \rangle)$ inner product space, $A \subseteq X$.
(a) A^{\perp} is a subspace in X.	
(b) A^{\perp} is closed in X (complement $X \setminus A^{\perp}$ is an open set)	
(c) $A^{\perp} = \overline{A}^{\perp}$	
(d) $A^{\perp} = Span(A)^{\perp}$	
Proof:	(a) $x, y \in A^{\perp}$, $a \in A$, $\lambda \in \mathbb{F}$

$$
\Rightarrow \langle x+y, a \rangle = \langle x, a \rangle + \langle y, a \rangle = 0
$$

\n
$$
\langle 0, a \rangle = 0
$$

\n
$$
\langle x, a \rangle = \bar{x} \langle x, a \rangle = 0 \Rightarrow \int_{1}^{1} \text{ subspace in } X.
$$

\n(b) Take $(x_n)_{n\in\mathbb{N}} \subseteq A^{\perp}$ with $x_n \xrightarrow{h \to \infty} x \in X$.
\nFor any $a \in A$: $\lim_{n \text{ both arguments}}$
\n
$$
0 = \lim_{n \to \infty} \langle x_n, a \rangle = \langle \lim_{n \to \infty} x_{n,1} a \rangle = \langle x, a \rangle \Rightarrow x \in A^{\perp}
$$

\n(c) $A \subseteq \overline{A} \Rightarrow A^{\perp} \supset A^{\perp}$
\nOther inclusion? $(\subseteq) x \in A^{\perp}$, $\oint_{\infty} \overline{A}$, choose $(a_n) \subseteq A$ with $\lim_{n \to \infty} a_n = b$
\n
$$
\langle x, b \rangle = \langle x, \lim_{n \to \infty} a_n \rangle = \lim_{n \to \infty} \langle x, a_n \rangle = 0
$$

\n
$$
\Rightarrow x \in \overline{A}^{\perp}
$$

\n(d) $A \subseteq Span(A) \Rightarrow A^{\perp} \supseteq Span(A)$
\nOther inclusion? $(\subseteq) x \in A^{\perp}$, $\sum_{j=1}^{n} \lambda_j \cdot a_j \in Span(A)$:
\n
$$
\langle x, \sum_{j=1}^{n} \lambda_j \cdot a_j \rangle = \sum_{j=1}^{n} \lambda_j \cdot \langle x, a_j \rangle = 0 \Rightarrow x \in Span(A)^{\perp}
$$

$$
\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=
$$

Hilbert Spaces - Part 7

 $\begin{cases} y & \text{choose } x, y \text{ orthogonal:} \\ x & \text{otherwise.} \end{cases}$

Pythagorean theorem: $(X, \langle \cdot, \cdot \rangle)$ inner product space with induced norm $\| \cdot \|$. For any $x, y \in X$ with $x \perp y$, we have:

$$
\|x+y\|^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle + \langle y, y \rangle
$$

= $\|x\|^2 + \|y\|^2$

Approximation Formula

This means: $\|x - x_{\vert_{\mathcal{U}}}\| = \text{dist}(x, \mathsf{W})$