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Hilbert SPaces - Part 1
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Defiitien |- {R/(EE- An [~ vector space X with inner product
<‘z'> : Xx X —> [F, which means

() <x,x> > 0 foral xe
< J > X (positive definite)

m <)( ; )(> f— 0 :> X = 0 (Zero vector)

(2) <>/ )‘ Xt '>Z> = <)/))(> + <>/,/)\<> for all X/SZ,)’GX
<y, Ax> = 7\-<y ) x> for all \E F,x,’%,yex

(linear in the second argument)

(3) <X )>,> — <Y ) X> for all X/)Ié X (conjugate symmeftric)

is called an inner-product space. (Pre-Hilbert space)

Cauchy-Schwarz inequality: For an inner Product space (X, <';'>>, we have:
2
‘(y, >l < xx> yy > foral xye X

Proof: For vy +# O: Ly, x> {y, x>
/ 0L <<‘ <Y'Y>'>/ ) X <Y'Y>.>/>

Ly, % <Y/x>
= <><, X> — <>;,>/><Y;x> - <Y'>I><XIY>

<Y/ X>' <Y1 X>.
L G 7

l <Y/ x> ll
= X,X> —
< D2 U

\
Result: ||X|| = J<X/ X> defines a horm on X

Definition:  An inner product space (X, <1>> is called a Hilbert space

if (X,HH) is complete.
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YN
(XI <’>>

Definition (Hilbert space): \F- vector space

\ < ’ > X x X —> ﬂ: inher product

where ()(, ||||\) is a Bahach spPace

with respect to the norm ||X|| = \l<></ X>‘

hormed vector spaces

N
Example: (a) (l: with standard inner product finite-dimensional
&—
< are always complete >

(b) R with given inner product

(C) Il(lN,C) — z(xhvhen\l ‘ X,eC and glxh\1< oog

/4
X

with inner Pproduct: <Y/ x> = Z % X (convergent series!)
n=1

(d) (_Q_, &, /\A> measure space

1 1
i(Q,/u>: 5;5_0__>(]: measurable _(S;H' O\r\ <oo/§

1
“5” ::l “Hl o\r\ hot a norm in generall T ; S
0 |

(0= L1000 40 whee 0= {5828 | 5=

measurable

H [5]“ L= ||§|| well-defined ~> norm on ]_’L(Q,/\A)

We get a Hilbert space with the followihg inner product:

{91,157 = § @50 dp)
L
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(X ! <.>) inner product space (lF— vector space + ihnher Produc’r>

— (X 1 ||||) normed space with ”X“ = \l<xl X>‘

\ horm induced by inher product

Polarization identity: (for case |F= C]:)

(X ' <.>) inner Product space with induced horm |||| . Then, for all X,yeXi

inner Pproduct

1 1 1 . ) 1 . _ 1
<X,>/> — ?<||X+>/” - "X‘Y“ - L"X'i' '->/|| + b"X—LYH) is linear in the

secohd argumen‘(

et eyl = Cxry yxay> = Koy >+ Koy >+ Ky
— | x-y i =-{x-y, x—y> = - %P + Ly k) + x, Y =LYy 7
_L.||X+L>/||Z:-L<X+L>/ ) X+L)/> =-t <x,x> - <)’/x> t <x,y> - ¢ <>/'>/>

-yl = ixmty , xeiy> = ikx x> = Ly + Ky +iKyiy7

[

Polarization identity: (for case |F= R)

Goyy = w(Ieyl=lx=yI1)  sor an xyeX.
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(X 7 <.>) inner Product space (\F— vector space + inhner Produc’f>

”X”(‘,_> = \]<X/X>‘ induced nhorm
2 2
we get: xrylley + -yl %
— <x+y,x+>/> + <x-y,x—y> X

= oD+ yxy + K yy + Yy
+ X x = Lyiny - <><,y> i <>/,>’>

= ||X||,<_> A ||>/||9<_,> (Parallelogram law)
,/\\
/ ’ N —t
2 2 1 L
||X+>/ ”(.,) + ||X_>/ ”(.,? — L ”X”(,.) + 1 ||>’”(.'>

Proposition: Let (X,””) be a normed spPace. Then:

The parallelogram law is satisfied (Vx,yexi ||X+>/ ||Z+ ||X—>/ ||Z: 2'||X||L+ 2”)’”9—>

<:> "” is induced by an innher product on >< (” ||<,> = ””>
5

hext video

In this case: <X,>/> = %(”)(er”i_ IIX-)/||1> for |F= !R

Gy i= (e = hx-yli= s iylie s x- iyl
for [F= C

gives the inner product on X

Remember: A Hilbert space is a Bahach space where the parallelogram law holds.
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Jordan-voh Neumanh Theorem: Let (X,””) be a hormed space. Then:

The parallelogram law is satisfied (Vx,yeX= ||X+)/||Z+ ||X—>/||Z: 2'||X||?_+ 2'||)’||Q_>

:> |-l is induced by an inner product on ><
Qﬂ\ere is an inner product {,+> on >< such that ||X||Z: \l<></x>‘ >
In this case: - ||X+ |1—| |1—> R
- ayy = (vl = 1xeyl for [F=

Gy = (e = hx-yli= s iylie s x-iy )

gives the inner product on X for |F= C

Proof: Consider case |F: rR So we define: <X,>/> = %(HX+>’”1— ” X_)/”l>.

To show three properties: (1) positive definite

(2) linear in the second argument

(3) symmetry
(1): <X'x> — 1:(”)(*')(”1‘_ “X—X”L> — 1?HZX“’L = Hx“l =
and <X,x> =0 = x=0
3 Ly = gyl ly-xI") = (el Ix-yI") = oy

(2) linearity: we will use: ||X+>/||Z+ ||X—>/||Z: 2-||X||L+ 2“)’“1

First step: <w, 7;> — 1?<H\d+2‘||1— |w-2 ||L>

1 1 1 1 1
= (2P el =l + w-217)

ATy X=Y ?(+37 '>‘<'_'>‘;
parallelogram (> xi= w+‘—12 (> K= w—‘—zz
|aW y:: 1—1’% S\/' = 1_1’%

/I

7
/~\
=
) b
o
\

induction

>
helN

First result: %<\~/: 2> = <W, 11:2>
additivity: W, 2> + N, 2>
= %(H\H 2 ||1— | w-2 ||1> + %(H\«H ) ||1‘ |w-2 ||l>

= 1?(H\“’+ 2-;’?: +'£_—;£ ”7'+ |\‘.I+ };ﬁ _?:;@ ”7'
llel 2 -3 1 -
Pa'a|aew°3'am\ _ (HV_;};% +}Lz A H\*" 2;1 _%Lz ”1> >
M ik g2t A1 i
= H{u ez B - (o2 2 2R
1 A1 A1 A
= (e - hv-2E) =2 Qo i
) A
z N, 242 D
Homogeneity: <\AI,Z> + <\,\/I7;>addi:ﬂmy<\f\/,2+%>
/r N
] <\"/: 2> <\"/12—'2>

% w, 2> = vu,is>

()

induction

~>  klw, > =w, k2>

ke IN

combining with (*) : %\<\'\//2> — <\~/,'I:},Z> for all k,MQN

0-lw, 2> = v, 02>
all positive (1)-v, 2> = N, (2>

real humbers
cah be approximated D
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(X,<.>)
\_,-\(—}

—=> gives geomelry fo vector space ><

\
t we cah measure lengths: nx“ c— \l<x,x>

> we cah measure angles / orthogonality

Definition: (X ! <.>) innher product space.

() xe X is orthogonal to ye X i X,y =0. Write XLy,

2) xe X is called orthogonal to A < X if <X, 0~> =0 for al aeA.

We write XJ_A, {
//4

for all ae A
(3) B X is called orthogonal to A < X i <B, a> = tor all beB
We write B 1 A ,
(4) The orthogonal complement of A S X is defined by:
L
A ZZ{XQX‘XJ_A} A
L

Properties: (X < >) inher product space , Ac X

L
(a) A is a subspace in X

L L
(b) A is closed in X (comPlement X\A is an oPeh sef)

S A=A

1 1
d) A = Span(A)

Proof: (a) x,yé/\L, ac A, NelF
= (xay a0 = Kxay + Kyiop =0
0,2 =0
<7\.XIQ> = X-<x,a> =0 = AL subspace in X.

L

FOV any O\QA . inner product continuous

in \\Zo’fh arguments i
Ozvl‘im<x,,,o\> = <1|_T>“ xh,a> :<x,a> = xeA
—>0e =

1

@ Ach = A2A

Other inclusion? (g) XE A-L, Leﬁ , choose (O\h)EA with lim ah:E

h—=>00
{x, by = <x, lim a, > = lim {x,a,” = 0
h—>0e /t h—>00
inner product continuous
in both arguments

—1

= xe A
L L
d AC span(A) = A 2= span(A)

Other inclusion? (C_:) XE Al, Z Ay a5 € Sran(A) :
j=4

d—
. . 1
<3 Z;%"’\s> = _Zj%' <x,a> =0 => xe Span(A)
J= J=
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X+Y

choose X,y orthogonal: <x,>/> = 0

X

Pythagorean theorem:

(X / <,>) inner product space with induced norm ”" )

For any x,yex with X Ly, we have:

=0 =0
||’<+Y||1 = <x+>/ , x+)/> = X, x )+ m +m + <y,y>
= Ixlit+ Iyt
APProximation Formula
7 x+U
P length = || x- ul|
all ) '

distance between x+U and | : inf zllx—ull ‘Uté u’g =: dist(x, W)

Theorem: et (X | <,>) be a Hilbert space, W< x be closed anhd convex.
_J

W
For every XE€E X there exists qg’cohhecﬂoh line between
two points uw,ve | lies
a uhique best approximation:

completely in W /\@
convex o o
x|u€ u hot convex

This means: ” X — XluH — dist(x, W)



