The following pages cover the whole Hilbert Spaces course of the Bright Side of Mathematics. Please note that the creator lives from generous supporters and would be very happy about a donation. See more here: https://tbsom.de/support

Have fun learning mathematics!

<u>Proof:</u> For $y \neq 0$:

The Bright Side of Mathematics

• unitary + self-adjoint operators

Hilbert Spaces - Part 1

(1) $\langle x, x \rangle \geq 0$ for all $x \in X$ (positive definite) and $\langle x, x \rangle = 0 \implies x = 0$ (zero vector)

<u>Definition:</u> $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. An \mathbb{F} -vector space X with inner product

 $\langle \cdot , \cdot \rangle : X \times X \longrightarrow \mathbb{F}$, which means

(2)
$$\langle \gamma, \chi + \tilde{\chi} \rangle = \langle \gamma, \chi \rangle + \langle \gamma, \tilde{\chi} \rangle$$
 for all $\chi, \tilde{\chi}, \gamma \in X$
 $\langle \gamma, \lambda \cdot \chi \rangle = \lambda \cdot \langle \gamma, \chi \rangle$ for all $\lambda \in \mathbb{F}, \chi, \tilde{\chi}, \gamma \in X$

(linear in the second argument)
$$\langle x, y \rangle = \overline{\langle y, x \rangle} \text{ for all } x, y \in X \text{ (conjugate symmetric)}$$

is called an inner-product space. (pre-Hilbert space)

Cauchy-Schwarz inequality: For an inner product space $(X, <\cdot, \cdot>)$, we have:

 $\left|\left\langle y,x\right\rangle \right|^{2}\leq\left\langle x,x\right\rangle \left\langle y,y\right\rangle$ for all $x,y\in X$

 $0 \leq \left\langle x - \frac{\langle y, x \rangle}{\langle \gamma, y \rangle} \cdot y , x - \frac{\langle y, x \rangle}{\langle \gamma, y \rangle} \cdot y \right\rangle$

 $= \langle x, x \rangle - \frac{\overline{\langle y, x \rangle}}{\overline{\langle y, x \rangle}} \langle y, x \rangle - \frac{\overline{\langle y, x \rangle}}{\overline{\langle y, y \rangle}} \langle x, y \rangle$ $+ \frac{\overline{\langle y, x \rangle}}{\overline{\langle y, y \rangle}} \langle y, x \rangle - \frac{\overline{\langle y, x \rangle}}{\overline{\langle y, y \rangle}} \langle x, y \rangle$

$$= \left\langle \times, \times \right\rangle - \frac{\left|\left\langle \gamma, \times \right\rangle\right|^{2}}{\left\langle \gamma, \gamma \right\rangle}$$
Result:
$$\| \times \| := \left\langle \times, \times \right\rangle \quad \text{defines a norm on } X$$
Definition:
An inner product space $\left(X, \left\langle \cdot, \cdot \right\rangle \right)$ is called a Hilbert space if $\left(X, \| \cdot \| \right)$ is complete.

Definition (Hilbert space): $(X, \langle \cdot, \cdot \rangle)$ \mathbb{F} - vector space $\langle \cdot, \cdot \rangle : X \times X \longrightarrow \mathbb{F}$ inner product

Hilbert Spaces - Part 2

where $(X, ||\cdot||)$ is a Banach space with respect to the norm $\|x\| := \sqrt{\langle x, x \rangle}$

(c) $l^{1}(\mathbb{N},\mathbb{C}) := \left\{ (x_{h})_{h \in \mathbb{N}} \mid X_{h} \in \mathbb{C} \text{ and } \sum_{n=1}^{\infty} |X_{n}|^{1} < \infty \right\}$ with inner product: $\langle \gamma, x \rangle = \sum_{n=1}^{\infty} \overline{\gamma_n} \cdot x_n$ (convergent series!)

with inner product:
$$\langle \gamma, x \rangle = \sum_{n=1}^{\infty} \overline{\gamma_n} \cdot x_n$$
 (convergent solution) (d) (Ω, A, μ) measure space

 $\mathcal{L}^{2}(\Omega,\mu) := \left\{ f : \Omega \longrightarrow \mathbb{C} \text{ measurable } \left| \int_{\Omega} |f|^{2} d\mu < \infty \right\} \right\}$

 $\|f\| := \int_{\Omega} |f|^2 d\mu$ not a norm in general! $L^{2}(\Omega, \mu) := L^{2}(\Omega, \mu) /_{\mathcal{N}} \quad \text{where} \quad \mathcal{N} := \left\{ f : \Omega \to \mathbb{C} \mid \|f\| = 0 \right\}$

$$\|[f]\| := \|f\| \quad \text{well-defined} \quad \longrightarrow \quad \underline{\text{norm}} \quad \text{on} \quad \underline{L}^2(\Omega, \mu)$$
We get a Hilbert space with the following inner product:
$$\langle [g], [f] \rangle := \int \underline{g(\omega)} f(\omega) \, d\mu(\omega)$$

$(X, \langle \cdot, \cdot \rangle)$ inner product space (F-vector space + inner product)

Hilbert Spaces - Part 3

 $\implies (X, \|\cdot\|)$ normed space with $\|x\| := \sqrt{\langle x, x \rangle}$ norm induced by inner product <u>Polarization identity</u>: (for case $\mathbb{F} = \mathbb{C}$)

 $(X, \langle \cdot, \cdot \rangle)$ inner product space with induced norm $\|\cdot\|$. Then, for all $X, y \in X$:

$$\langle x, y \rangle = \frac{1}{4} \left(\| x + y \|^2 - \| x - y \|^2 - i \| x + i y \|^2 + i \| x - i y \|^2 \right) \qquad \text{inner product is linear in the second argument}$$

$$|| x + y ||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle + \langle y, y \rangle$$

$$-\|x-y\|^2 = -\langle x-y, x-y \rangle = -\langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle - \langle y, y \rangle$$

$$-i \cdot \|x + iy\|^{2} = -i \langle x + iy, x + iy \rangle = -i \langle x, x \rangle - \langle y, x \rangle + \langle x, y \rangle - i \langle y, y \rangle$$

$$i \|x - iy\|^{2} = i \langle x - iy, x - iy \rangle = i \langle x, x \rangle - \langle y, x \rangle + \langle x, y \rangle + i \langle y, y \rangle$$

Polarization identity: (for case
$$\mathbb{F} = \mathbb{R}$$
)
$$\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x - y\|^2) \qquad \text{for all } x, y \in X.$$

Polarization identity: (for case
$$\mathbb{F} = \mathbb{R}$$
)
$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) \qquad \text{for all } x, y \in X.$$

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$
 for all $x, y \in X$.

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$
 for all $x, y \in X$.

ON STEADY

The Bright Side of Mathematics

Hilbert Spaces - Part 4

$$\|\mathbf{x}\|_{\langle\cdot,\cdot\rangle}:=\sqrt{\langle\mathbf{x},\mathbf{x}\rangle}$$
 induced norm

We get:
$$\|x+y\|_{\langle x,y\rangle}^2 + \|x-y\|_{\langle x,y\rangle}^2$$

= $\langle x+y, x+y\rangle + \langle x-y, x-y\rangle$

$$= \langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle + \langle y, y \rangle$$

$$+ \langle x, x \rangle - \langle y, x \rangle - \langle x, y \rangle + \langle y, y \rangle$$

$$- 2 \cdot \|x\|^{2} + 2 \cdot \|y\|^{2}$$
 (parallelogram law)

$$= 2 \cdot \| \times \|_{\langle \cdot, \cdot \rangle}^{2} + 2 \cdot \| \gamma \|_{\langle \cdot, \cdot \rangle}^{2} \qquad (\underline{\text{parallelogram law}})$$

$$+ \bigcirc = 2 \cdot \bigcirc + 2 \cdot \bigcirc$$

Proposition: Let
$$(X, \|\cdot\|)$$
 be a normed space. Then: the parallelogram law is satisfied $(\forall x, y \in X \colon \|X + y\|^2 + \|X - y\|^2 = 2 \cdot \|X\|^2 + 2 \cdot \|y\|^2)$

 $\|x + y\|_{\langle y \rangle}^{2} + \|x - y\|_{\langle y \rangle}^{2} = 2 \cdot \|x\|_{\langle y \rangle}^{2} + 2 \cdot \|y\|_{\langle y \rangle}^{2}$

In this case: $\langle x, y \rangle := \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$ for $\mathbb{F} = \mathbb{R}$ $\langle x, y \rangle := \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 - i \|x + iy\|^2 + i \|x - iy\|^2 \right)$

 $\|\cdot\|$ is induced by an inner product on X $(\|\cdot\|_{\langle\cdot,\cdot\rangle} = \|\cdot\|)$ next video

gives the inner product on
$$X$$
. for $\mathbb{F}=\mathbb{C}$ Remember: A Hilbert space is a Banach space where the parallelogram law holds.

for $\mathbb{F} = \mathbb{C}$

Hilbert Spaces - Part 5

the parallelogram law is satisfied $(\forall x, y \in X : \|x + y\|^2 + \|x - y\|^2 = 2 \cdot \|x\|^2 + 2 \cdot \|y\|^2)$ \Longrightarrow $\|\cdot\|$ is induced by an inner product on X

(there is an inner product $\langle \cdot, \cdot \rangle$ on X such that $\|X\| := \sqrt{\langle x, x \rangle}$

there is an inner product
$$\langle \cdot, \cdot \rangle$$
 on X such that $\|X\| := \sqrt{\langle x, x \rangle}$.

In this case: $\langle x, y \rangle := \frac{1}{4} (\|X + y\|^2 - \|X - y\|^2)$ for $\mathbb{F} = \mathbb{R}$

$$\langle x, y \rangle := \frac{1}{4} (\|X + y\|^2 - \|X - y\|^2 - i \|X + iy\|^2 + i \|X - iy\|^2)$$

<u>Jordan-von Neumann Theorem</u>: Let $(X, \|\cdot\|)$ be a normed space. Then:

Proof: Consider case
$$\mathbb{F} = \mathbb{R}$$
. So we define: $\langle x,y \rangle := \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2)$.

To show three properties: (1) positive definite

(2) linear in the second argument

gives the inner product on X.

(3) symmetry (1): $\langle x, x \rangle = \frac{1}{4} (\|x + x\|^2 - \|x - x\|^2) = \frac{1}{4} \|2 \cdot x\|^2 = \|x\|^2 \ge 0$

and $\langle x, x \rangle = 0 \implies x = 0$

(3):
$$\langle y, x \rangle = \frac{1}{4} (\|y + x\|^2 - \|y - x\|^2) = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) = \langle x, y \rangle$$

$$(3): \langle y, x \rangle = \frac{1}{4} (\|y + x\|^2 - \|y - x\|^2) = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) = \langle x \rangle$$

(2) linearity: we will use:
$$\|x + y\|^2 + \|x - y\|^2 = 2 \cdot \|x\|^2 + 2 \cdot \|y\|^2$$

(2) linearity: we will use:
$$\|x + y\|^2 + \|x - y\|^2 = 2 \cdot \|x\|^2 + 2 \cdot \|y\|^2$$

First step: $\langle w, z \rangle = \frac{1}{4} \left(\|w + z\|^2 - \|w - z\|^2 \right)$

First step:
$$\langle W, Z \rangle = \frac{1}{4} \left(\left\| W + Z \right\|^2 - \left\| W - Z \right\|^2 \right)$$

First step:
$$\langle W, Z \rangle = \frac{1}{4} \left(\|W + Z\|^2 - \|W - Z\|^2 \right)$$

First step:
$$\langle W, Z \rangle = \frac{1}{4} \left(\|W + Z\|^2 - \|W - Z\|^2 \right)$$

$$= \frac{1}{4} \left(\|W + Z\|^2 + \|W\|^2 - \left(\|W\|^2 + \|W - Z\|^2 \right) \right)$$

$$= \frac{1}{4} \left(\|W + Z\|^2 + \|W\|^2 - \left(\|W\|^2 + \|W - Z\|^2 \right) \right)$$

$$= \frac{1}{4} \left(\|W + Z\|^2 + \|W\|^2 - \left(\|W\|^2 + \|W - Z\|^2 \right) \right)$$

$$= \frac{1}{4} \left(\left\| \underbrace{\mathbf{w} + \mathbf{z}} \right\|^2 + \left\| \underbrace{\mathbf{w}} \right\|^2 - \left(\left\| \underbrace{\mathbf{w}} \right\|^2 + \left\| \underbrace{\mathbf{w} - \mathbf{z}} \right\|^2 \right) \right)$$

$$= \frac{1}{4} \left(\left\| \underbrace{\mathbf{w} + \mathbf{z}} \right\|^2 + \left\| \underbrace{\mathbf{w}} \right\|^2 - \left(\left\| \underbrace{\mathbf{w}} \right\|^2 + \left\| \underbrace{\mathbf{w} - \mathbf{z}} \right\|^2 \right) \right)$$

$$= \frac{1}{4} \left(\left\| \underbrace{\mathbf{w} + \mathbf{z}} \right\|^{2} + \left\| \underbrace{\mathbf{w}} \right\|^{2} - \left(\left\| \underbrace{\mathbf{w}} \right\|^{2} + \left\| \underbrace{\mathbf{w} - \mathbf{z}} \right\|^{2} \right) \right)$$

$$\times + y \qquad \times - y \qquad \qquad \times + \widetilde{y} \qquad \qquad \times - \widetilde{y}$$

$$\Rightarrow \times := \mathbf{w} + \frac{1}{2} \mathbf{z} \qquad \qquad \Rightarrow \times := \mathbf{w} - \frac{1}{2} \mathbf{z}$$

$$y := \frac{1}{2} \mathbf{z} \qquad \qquad \qquad \widetilde{y} := \frac{1}{2} \mathbf{z}$$

$$= \frac{1}{2} \left(\|\mathbf{x}\|^{2} - \|\widehat{\mathbf{x}}\|^{2} \right) = \frac{1}{2} \left(\|\mathbf{w} + \frac{1}{2}\mathbf{z}\|^{2} - \|\mathbf{w} - \frac{1}{2}\mathbf{z}\|^{2} \right)$$

$$= 2 \cdot \left\langle \mathbf{w}, \frac{1}{2}\mathbf{z} \right\rangle$$

$$= 2 \cdot \left\langle \mathbf{w}, \frac{1}{2}\mathbf{z} \right\rangle$$
induction
$$\frac{1}{2^{n}} \left\langle \mathbf{w}, \mathbf{z} \right\rangle = \left\langle \mathbf{w}, \frac{1}{2^{n}}\mathbf{z} \right\rangle$$

$$= \left\langle \mathbf{w}, \frac{1}{2^{n}}\mathbf{z} \right\rangle$$

Additivity:
$$\langle W, \hat{z} \rangle + \langle W, \hat{z} \rangle$$

$$= \frac{1}{4} \left(\|W + \hat{z}\|^2 - \|W - \hat{z}\|^2 \right) + \frac{1}{4} \left(\|W + \hat{z}\|^2 - \|W - \hat{z}\|^2 \right)$$

$$= \frac{1}{4} \left(\|W + \hat{z}\|^2 - \|W - \hat{z}\|^2 + \|W + \hat{z}\|^2 - \|W - \hat{z}\|^2 \right)$$

$$= \frac{1}{4} \left(\|W + \hat{z}\|^2 + \|W - \hat{z}\|^2 + \|W + \frac{2 + \hat{z}}{4}\|^2 + \|W - \hat{z}\|^2 +$$

$$= \frac{1}{4} \left(\left\| w + \frac{2 + \hat{2}}{2} + \frac{2 - \hat{2}}{2} \right\|^{2} + \left\| w + \frac{2 + \hat{2}}{2} - \frac{2 - \hat{2}}{2} \right\|^{2} - \left(\left\| w - \frac{2 + \hat{2}}{2} + \frac{2 - \hat{2}}{2} \right\|^{2} + \left\| w - \frac{2 + \hat{2}}{2} - \frac{2 - \hat{2}}{2} \right\|^{2} \right) \right)$$

$$= \frac{1}{4} \left(2 \cdot \left\| w + \frac{2 + \hat{2}}{2} \right\|^{2} + 2 \left\| \frac{2 - \hat{2}}{2} \right\|^{2} - \left(2 \left\| w - \frac{2 + \hat{2}}{2} \right\|^{2} + 2 \left\| \frac{2 - \hat{2}}{2} \right\|^{2} \right) \right)$$

$$= \frac{1}{2} \left(\| \mathbf{w} + \frac{2 + \hat{\mathbf{z}}}{2} \|^{2} - \| \mathbf{w} - \frac{2 + \hat{\mathbf{z}}}{2} \|^{2} \right) = 2 \left\langle \mathbf{w}, \frac{2 + \hat{\mathbf{z}}}{2} \right\rangle$$

$$= \left\langle \mathbf{w}, \mathbf{z} + \hat{\mathbf{z}} \right\rangle$$

Homogeneity:
$$\langle W, Z \rangle + \langle W, Z \rangle = \langle W, Z + Z \rangle$$

$$2 \cdot \langle W, Z \rangle$$
induction

induction
$$k \cdot \langle w, z \rangle = \langle w, k z \rangle$$

$$k \cdot \langle w, z \rangle = \langle w, k z \rangle$$

$$k \cdot \langle w, z \rangle = \langle w, k z \rangle$$

combining with
$$(*): \frac{k}{2^n} \langle W, Z \rangle = \langle W, \frac{k}{2^n} Z \rangle$$
 for all $k, n \in \mathbb{N}$

all positive
$$(-1) \cdot \langle W, Z \rangle = \langle W, (-1) \cdot Z \rangle$$

$(X, \langle \cdot, \cdot \rangle)$ \Rightarrow gives geometry to vector space X

Hilbert Spaces - Part 6

> we can measure lengths: $\|x\| := \{x, x\}$ > we can measure angles / orthogonality

<u>Definition:</u> $(X, \langle \cdot, \cdot \rangle)$ inner product space. (1) $x \in X$ is orthogonal to $y \in X$ if $\langle x, y \rangle = 0$. Write $X \perp y$.

- (2) $x \in X$ is called orthogonal to $A \subseteq X$ if $\langle x, \alpha \rangle = 0$ for all $\alpha \in A$. We write $X \perp A$.
- (3) $\beta \subseteq X$ is called <u>orthogonal</u> to $A \subseteq X$ if $\langle b, a \rangle = 0$ for all $a \in A$ for all $b \in B$
- We write $\beta \perp A$.

(4) The orthogonal complement of $A \subseteq X$ is defined by:

 $A^{\perp} := \{ x \in X \mid x \perp A \}$

 $\langle \lambda \cdot x , \alpha \rangle = \overline{\lambda} \cdot \langle x , \alpha \rangle = 0$ $\Longrightarrow A^{\perp}$ subspace in X. (b) Take $(X_n)_{n \in \mathbb{N}} \subseteq \bigwedge^{\perp}$ with $X_n \xrightarrow{n \to \infty} X \in X$.

inner product continuous in both arguments

 $0 = \lim_{h \to \infty} \langle x_h, a \rangle \stackrel{\checkmark}{=} \langle \lim_{h \to \infty} x_h, a \rangle = \langle x, a \rangle \implies x \in A^{\perp}$

Other inclusion? \subseteq $\times \in A^{\perp}$, $b \in \overline{A}$, choose $(a_n) \subseteq A$ with $\lim_{n \to \infty} a_n = b$

 $\langle x, b \rangle = \langle x, \lim_{h \to \infty} a_h \rangle = \lim_{h \to \infty} \langle x, a_h \rangle = 0$

in both arguments

 $\Rightarrow \langle x+y, a \rangle = \langle x, a \rangle + \langle y, a \rangle = 0$

<u>Proof:</u> (a) $X, Y \in A^{\perp}$, $a \in A$, $\lambda \in \mathbb{F}$

For any $a \in A$:

(c) $A \subseteq \overline{A} \implies A^{\perp} \supseteq \overline{A}^{\perp}$

 $\langle 0, \alpha \rangle = 0$

(d)
$$A \subseteq Span(A) \implies A^{\perp} \supseteq Span(A)^{\perp}$$

Other inclusion? $(\subseteq) \times \in A^{\perp}$, $\sum_{j=1}^{n} \lambda_{j} \cdot \alpha_{j} \in Span(A)$:
 $(\times, \sum_{j=1}^{n} \lambda_{j} \cdot \alpha_{j}) = \sum_{j=1}^{n} \lambda_{j} \cdot \langle \times, \alpha_{j} \rangle = 0 \implies \times \in Span(A)^{\perp}$

 \Rightarrow $\times \in \overline{A}^{\perp}$

choose x, y orthogonal: $\langle x, y \rangle = 0$

Hilbert Spaces - Part 7

Pythagorean theorem: $(X, \langle \cdot, \cdot \rangle)$ inner product space with induced norm $\| \cdot \|$.

 $\|x+y\|^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle + \langle y, y \rangle$

 $= \|x\|^2 + \|y\|^2$

$$= \|x\|^{2} + \|y\|^{2}$$
Approximation Formula
$$x + U$$

$$x + U$$

This means: $\|x - x_{|_{\mathcal{U}}}\| = dist(x, \emptyset)$

Theorem: Let $(X, \langle \cdot, \cdot \rangle)$ be a <u>Hilbert space</u>, $U \subseteq X$ be <u>closed</u> and <u>convex</u>.

For every $X \in X$ there exists a unique best approximation: U each connection line between two points $u, v \in U$ lies completely in U

 $x_{lu} \in U$

not convex