Functional analysis - part 29

Let X be a complex Banach space and T: $X \rightarrow X$ be a bounded linear operator.

 $\lambda \in \sigma(T) \iff (T - \lambda)$ not invertible

Finite-dimensional example: $X = \mathbb{C}^n$, $\overline{Tx} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_4 \\ \vdots & \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1 \lambda_2 & \lambda_2 \lambda_3 \\ \vdots & \lambda_n \lambda_n \end{pmatrix}$ $\implies \mathfrak{J}(\top) = \left\{ \lambda_1, \lambda_2, ..., \lambda_n \right\} = \mathfrak{J}(\top) \qquad \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, ..., \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$

are eigenvectors

 $Infinite-dimensional example: X = l^{P}(N)$, $\rho \in [1, \infty)$

$$
T x = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} \lambda_1 x_1 \\ \lambda_2 x_2 \\ \vdots \end{pmatrix}
$$

Formally: For $\lambda_1, \lambda_2, ... \in \mathbb{C}$ with $sup_{j \in \mathbb{N}} |\lambda_j| < \infty$, define: $T : \ell^{f}(\mathbb{N}) \rightarrow \ell^{f}(\mathbb{N})$ $(T_{x})_{i} := \lambda_{i} x_{i}$

- \bullet $e_{1} = (1, 0, 0, ...)$ is an eigenvector with eigenvalue λ_{1}
- $e_i = (0, 1, 0, ...)$ is an eigenvector with eigenvalue λ_i

 \Rightarrow $\nabla(T) \supseteq {\lambda, \lambda, \ldots} = \sigma_r(T)$

Let
$$
\mu \in \mathbb{C}
$$
 be a number with $\mu \notin \{\lambda_1, \lambda_2, ...\}$ but $\mu \in \{\lambda_1, \lambda_2, ...\}$, then $\mu = 0$

$$
\implies
$$
 T- μ is injective

Show: T-
$$
\mu
$$
 is not surjective
\nProof: Assume T- μ is surjective \implies T- μ is bijective \implies (T- μ)¹ bounded
\n \implies $||(T-\mu)^{1}|| \ge ||(T-\mu)^{1}e_{j}||_{H^{1}(N)} = ||(X_{j}-\mu)^{1}e_{j}||_{H^{1}(N)} = |(X_{j}-\mu)^{1}|$
\n $= \frac{1}{|X_{j}-\mu|}$ for a subsequence $\frac{1}{\mu}$

Result:

$$
\underline{d}t: \nabla(T) = \left\{ \lambda_{1}, \lambda_{2}, \ldots \right\} \cup \left\{ \mu \in \mathbb{C} \mid \mu \notin \left\{ \lambda_{1}, \lambda_{2}, \ldots \right\} \wedge \mu \in \left\{ \lambda_{1}, \lambda_{2}, \ldots \right\} \right\}
$$
\n
$$
\nabla_{P}(T) = \nabla_{P}(T)
$$