Functional analysis - part 24

Uniform boundedness principle (Banach-Steinhaus theorem)

$$X,Y$$
 normed spaces, X Banach space.
$$\mathcal{B}(X,Y) := \left\{ T \colon X \longrightarrow Y \mid T \text{ linear + bounded } \right\}$$

Theorem: For every subset $M \subseteq B(X,Y)$ holds:

M is bounded pointwise on $X \iff M$ is uniformely bounded More concretely: $\forall \exists \forall \|Tx\|_{Y} \leq C_{X} \iff \exists \forall \|T\|_{X \to Y} \leq C$

Proposition: X, Y normed spaces, X Banach space.

Let
$$T_n \in B(X,Y)$$
 for all $n \in \mathbb{N}$ with $\lim_{n \to \infty} T_n \times exists$ for all $x \in X$.

Then: $T: X \rightarrow Y$ defined by $Tx := \lim_{n \to \infty} T_n \times is$ linear and bounded.

Proof: $M := \{T_n \mid n \in \mathbb{N}\}$ is bounded pointwise on $X \implies T$ here is a $C \ge 0$ with $\|T_n\| \le C$ for all n

$$\Rightarrow \|T\|_{X\to Y} = \sup \left\{ \|T\times I\|_{Y} \mid \|x\|_{X} = 1 \right\} \leq C$$

$$\|\lim_{n\to\infty} T_n \times \|_{Y} = \lim_{n\to\infty} \|T_n \times \|_{Y} \leq C$$