ON STEADY

The Bright Side of Mathematics

Functional analysis - part 31

Spectral radius: X complex Banach space $T: X \longrightarrow X$

bounded linear operator



Theorem: X complex Banach space , $T:X\longrightarrow X$ bounded linear operator.

Then: (a) $\Gamma(T) \subseteq \mathbb{C}$ is compact

(b)
$$X \neq \{0\} \implies \sigma(T) \neq \emptyset$$

(c)
$$\Gamma(T) := \sup_{\lambda \in \Gamma(T)} |\lambda| = \lim_{k \to \infty} |T^k|^{\frac{1}{k}} = \inf_{k \in \mathbb{N}} |T^k|^{\frac{1}{k}} \le |T| < \infty$$

<u>Proof:</u> For $\lambda \in \mathbb{C}$ with $|\lambda| > ||T|| : \left(T - \frac{T}{\lambda} \right)^{-1} = \sum_{k=0}^{\infty} \left(\frac{T}{\lambda} \right)^k$

$$\Rightarrow \left(T - \lambda\right)^{-1} = -\frac{1}{\lambda} \left(T - \frac{T}{\lambda}\right)^{-1} = -\frac{1}{\lambda} \sum_{k=0}^{\infty} \left(\frac{T}{\lambda}\right)^{k} \tag{*}$$

$$\Rightarrow \sup_{\lambda \in \mathcal{C}(T)} |\lambda| \leq ||T|| \Rightarrow \mathcal{C}(T)$$
 is bounded

For (b): Assume $\mathcal{J}(T) = \emptyset \implies \rho(T) = \mathbb{C}$

Reminder: The map $f(T) \longrightarrow B(X)$

$$\lambda \mapsto (T - \lambda)^{-1}$$
 is analytic.

Take any
$$\ell \in \mathcal{B}(X)'$$
: f_{ℓ} : $\longrightarrow \mathbb{C}$

$$\lambda \mapsto \ell((T - \lambda)')$$

analytic function (holomorphic function)

We get that \int_{0}^{∞} is a bounded entire function.

For
$$|\lambda| \geq 2 \cdot \|T\|$$
:
$$|f_{\ell}(\lambda)| \leq \|\ell\| \cdot \|(T - \lambda)^{-1}\| \leq \|\ell\| \frac{1}{|\lambda|} \sum_{k=0}^{\infty} \left(\frac{T}{\lambda}\right)^{k} (k)$$

 $\leq \frac{\|\mathbf{l}\|}{\|\mathbf{T}\|}$ Liouville's theorem

 \longrightarrow f_{\prime} is constant

$$f_{\ell}(0) = \ell(T^{-1})$$

$$f_{\ell}(\lambda) = \ell((T - \lambda)^{-1}) = \ell(\sum_{k=0}^{\infty} (T)^{-(k+1)} \cdot (\lambda)^{-k})$$

$$= \sum_{k=0}^{\infty} \ell(T^{-(k+1)}) \cdot \lambda^{k}$$

$$\implies \ell(T^{-2}) = 0$$
 for all $\ell \in \mathcal{B}(X)$