ON STEADY

The Bright Side of Mathematics

Functional analysis - part 29

Let X be a complex Banach space and $T: X \longrightarrow X$ be a bounded linear operator.

 $\lambda \in \mathcal{J}(T) \iff (T - \lambda)$ not invertible

Finite-dimensional example: $X = \mathbb{C}^n$, $T_X = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \ddots \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \ddots \end{pmatrix} = \begin{pmatrix} \lambda_1 x_1 \\ \vdots \\ \ddots \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$ $\implies \mathcal{J}(\top) = \left\{ \lambda_1, \lambda_2, \dots, \lambda_n \right\} = \mathcal{J}_{\rho}(\top)$

are eigenvectors

Infinite-dimensional example: $X = l^{r}(N)$, $p \in [1, \infty)$

$$T_{X} = \begin{pmatrix} \lambda_{1} \\ \lambda_{2} \\ \vdots \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \end{pmatrix} = \begin{pmatrix} \lambda_{1} x_{1} \\ \lambda_{2} x_{2} \\ \vdots \end{pmatrix}$$

Formally: For $\lambda_1, \lambda_2, \dots \in \mathbb{C}$ with $\sup_{i \in \mathbb{N}} |\lambda_i| < \infty$, define: $T : \mathcal{L}(\mathbb{N}) \longrightarrow \mathcal{L}(\mathbb{N})$ $(\top_{\mathbf{X}})_{\mathbf{j}} := \lambda_{\mathbf{j}} \mathbf{x}_{\mathbf{j}}$

- $e_1 = (1, 0, 0, ...)$ is an eigenvector with eigenvalue λ_1
- $e_1 = (0, 1, 0, ...)$ is an eigenvector with eigenvalue λ_1

$$\implies \nabla(T) \supseteq \{\lambda_1, \lambda_2, ...\} = \nabla_{p}(T)$$
e.g. $\lambda_j = \frac{1}{j}$
e.g. $\lambda_j = \frac{1}{j}$
et $p \in \mathbb{C}$ be a number with $p \notin \{\lambda_1, \lambda_2, ...\}$ but $p \in \{\lambda_1, \lambda_2, ...\}$. then $p = 0$

⇒ T-µ is injective

L

Show:
$$T-\mu$$
 is not surjective
Proof: Assume $T-\mu$ is surjective $\Rightarrow T-\mu$ is bijective $\Rightarrow (T-\mu)^{1}$ bounded
 $\Rightarrow \|(T-\mu)^{1}\| \ge \|(T-\mu)^{1}e_{j}\|_{l^{\prime}(\mathbb{N})} = \|(\lambda_{j}-\mu)^{1}e_{j}\|_{l^{\prime}(\mathbb{N})} = |(\lambda_{j}-\mu)^{1}|$
 $= \frac{1}{|\lambda_{j}-\mu|} \xrightarrow{\text{for a subsequence}} \infty \frac{y}{l^{\prime}}$

 $\nabla(T) = \{\lambda_1, \lambda_2, \dots\} \cup \{\mu \in \mathbb{C} \mid \mu \notin \{\lambda_1, \lambda_2, \dots\} \land \mu \in \{\lambda_1, \lambda_2, \dots\}\}$ Result: $\overline{v_{r}}(T) \qquad \overline{v_{r}}(T) \sqrt{v_{r}}(T) \qquad \rho \in [1, \infty)$