The Bright Side of Mathematics

The following pages cover the whole Fourier Transform course of the Bright Side of Mathematics. Please note that the creator lives from generous supporters and would be very happy about a donation. See more here: [https://tbsom.de/support](https://thebrightsideofmathematics.com/support)

Have fun learning mathematics!

1

Fourier Series Exercises 1

Exercise 1. Compute the Fourier series of $f(x) = |sin(x)|$.

 $f(x) \approx \frac{a_0}{2} + \sum_{k=1}^{10} (a_k cos(kwx) + b_k sin(kwx))$ $\omega = \frac{2\pi}{T}$ Isinxl $a_k = \frac{2}{\pi} \int_{0}^{T} f(x) \cos(k \omega x) dx$, k 20 $b_{k} = \frac{2}{T} \int_{0}^{T} f(x) \sin(k\omega x) dx$, $k \ge 1$ $\frac{1}{2}$ $\frac{1}{4}$ $rac{1}{2}$ 2_{π} \rightarrow even: $b_k = 0$ $\frac{a_0}{2} = \frac{1}{\pi} \int_0^{\pi}$ Sin(x) dx = $\frac{1}{\pi}$ (- ω s π + ω s 0) = $\frac{2}{\pi}$ $T = \pi$ $\omega = \frac{2\pi}{\pi} = 2$ $a_{k} = \frac{2}{\pi} \int_{0}^{\pi} \sin(x) \cos(2kx) dx$ $\int sin(x) cos(2kx) dx = -cos(x) cos(2kx) - 2k \int cos(x) sin(2kx) dx$ $f^{1}(x) = \cos x$ g(x) = sin (2kz) $f'(x) = sin(x)$ $g(x) = cos(2kx)$ $f(x) = sin x$ $g'(x) = cos(2kx)2k$ $f(x) = -\omega s(x) - 9'(x) = -5\omega(2kx)2k$

$$
\int sin (x)cos(2kx) dx = -cos(x)cos(2kx) - 2k \int sin(x)sin(2kx) - 2k \int sinx cos(2kx) dx
$$

\n
$$
(1-4k^{2}) \int_{0}^{\pi} sin(x)cos(2kx) dx = (-cos(x)cos(2kx) - 2k sin(x)sin(2kx)) \Big|_{0}^{\pi}
$$

\n
$$
(1-4k^{2}) \int_{0}^{\pi} sin(x)cos(2kx) dx = \frac{1}{2} (-(1-1)(1) - (-11)(1)) = \frac{2}{1-4k^{2}}
$$

$$
1 - 4k \qquad \qquad 1 - 12k
$$

$$
a_k = \frac{2}{\pi} \cdot \frac{2}{1-4k^2}
$$
 $k > 1$ $a_0 = \frac{2}{\pi}$ $b_k = 0$

$$
\left\{ (x) \approx \frac{a_0}{2} + \sum_{k=1}^{10} (a_k cos(k\omega x) + b_k sin(k\omega x)) \right\}
$$

$$
|sin(x)| \approx \frac{2}{\pi} + \sum_{k=1}^{\infty} \frac{4}{\pi (1-4k^{2})} cos(2k\pi)
$$

 $X \mapsto \sin(X)$

 \Rightarrow $x \mapsto sin(2x)$

Proposition:	\n $U \subseteq \bigcup_{2r-per} (R, R)$ \n	\n given by \n	\n odd functions \n
\n $U :=\n \begin{cases}\n x \mapsto \sin(x), & x \mapsto \sin(2x), & x \mapsto \sin(3x), \dots, \\ x \mapsto 1, & x \mapsto \cos(x), & x \mapsto \cos(2x), & x \mapsto \cos(3x), \dots\n \end{cases}$ \n			

- **is linearly independent.**
- Δ **Pefinition:** A linear combination $f \in \text{Span}(U)$, $f: \mathbb{R} \longrightarrow \mathbb{R}$, is called **(real) trigonometric polynomial:** $f(x) = a_0 + \sum_{k=1}^{n} a_k \cos(k \cdot x) + \sum_{k=1}^{n} b_k \sin(k \cdot x)$, $a_i, b_i \in \mathbb{R}$ **For , we have a (complex) trigonometric polynomial: per** $f(x) = \sum_{k=1}^{n} C_k \exp(i \cdot k \cdot x)$, $C_k \in \mathbb{C}$

Fourier Transform — Part 3

\nIn
$$
\int_{2\pi-\text{per}} (\mathbb{R}, \mathbb{R})
$$
, we have (real) trigonometric polynomials:

\n
$$
\oint(x) = a_0 + \sum_{k=1}^{n} a_k \cos(k \cdot x) + \sum_{k=1}^{n} b_k \sin(k \cdot x) \quad a_k, b_k \in \mathbb{R}
$$
\nSubspace: $\mathcal{P}_{2\pi-\text{per}} := \text{Span}\left(x \mapsto 1, x \mapsto \cos(x), x \mapsto \cos(2x), x \mapsto \cos(3x), \dots, x \mapsto \sin(x), x \mapsto \sin(2x), x \mapsto \sin(3x), \dots, x \mapsto \sin(x)$

\nbasis:

Definition: For $f, g \in T$, we define an inner product: **per** $\left\langle \int g \right\rangle := \frac{1}{2\pi} \int f(x) g(x) dx$ $\left\langle x \mapsto 1, x \mapsto 1 \right\rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} 1 dx = 1$ **Example:** $\left\langle x \mapsto \cos(x), x \mapsto \sin(x) \right\rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} \cos(x) \sin(x) dx$ **sin()**

$$
= \frac{1}{2\pi} \left(\frac{1}{2} (\sin(x))^{2} \Big|_{\infty}^{2\pi} \right) = 0
$$

$$
\left\langle x \mapsto \cos(k \cdot x) , x \mapsto \sin(m \cdot x) \right\rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(k \cdot x) \sin(m \cdot x) dx = 0
$$

$$
\left\langle x \mapsto 1, x \mapsto \cos(k \cdot x) \right\rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(k \cdot x) dx = \frac{1}{2\pi} \frac{1}{k} \sin(k \cdot x) \Big|_{\infty}^{\pi} = 0
$$

$$
\left\langle x \mapsto 1, x \mapsto \sin(m \cdot x) \right\rangle = 0
$$

$$
\left\langle x \mapsto \cos(kx) , x \mapsto \cos(mx) \right\rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(kx) \cos(mx) dx
$$

\n
$$
= 0 \quad \text{if } k \neq m
$$

\n
$$
= 0 \quad \text{if } k \neq m
$$

\n
$$
= 0 \quad \text{if } k \neq m
$$

\n
$$
= \frac{1}{2} \left(e^{kx} + e^{-kx} \right)
$$

\nThen:
$$
\int_{-\pi}^{\pi} \cos(kx) \cos(mx) dx = \frac{1}{4} \int_{-\pi}^{\pi} \left(e^{k(m)x} + e^{-k(m)x} \right) dx
$$

\n
$$
+ e^{k(m)x} + e^{k(m)x} + e^{k(k-m)x} \right) dx
$$

\n
$$
= \frac{1}{4} \left(\frac{1}{i(k+m)} e^{i(k+m)x} + \frac{1}{i(k+m)} e^{-i(k+m)x} + \frac{1}{i(k-m)} e^{i(k-m)x} \right) \Big|_{-\pi}^{\pi}
$$

\n
$$
= \frac{1}{2} \left(\frac{1}{k+m} \sin((k+m)x) + \frac{1}{k+m} \sin((k-m)x) \right) \Big|_{-\pi}^{\pi} = 0
$$

\nAnd similarly:
$$
\int_{-\pi}^{\pi} \sin(kx) \sin(mx) dx = 0
$$

\n
$$
= \frac{1}{2} \left(x \mapsto 1, x \mapsto \cos(x), x \mapsto \cos(2x), x \mapsto \cos(3x) \right) \Big|_{-\pi}^{\pi}
$$

\n
$$
x \mapsto \sin(x), x \mapsto \sin(2x), x \mapsto \sin(3x) \Big|_{-\pi}^{\pi}
$$

$$
x \mapsto \sin(x), \quad x \mapsto \sin(2x), \quad x \mapsto \sin(3x), \dots
$$

satisfies $\langle f, g \rangle = 0$ $\int f g \in B$

b orthogonal basis (OB)

make to orthonormal basis

make to orthonormal basis (ONB)

We already know: $\beta = (x \mapsto 1, x \mapsto \cos(x), x \mapsto \cos(2x), x \mapsto \cos(3x), ...,$ $x \mapsto \sin(x)$, $x \mapsto \sin(2x)$, $x \mapsto \sin(3x)$,... **we have an orthogonal basis (OB) for with inner product per Normalize:** $\left\langle x \mapsto \sin(kx), x \mapsto \sin(kx) \right\rangle = \frac{1}{2\pi} \int_{0}^{\pi} \sin(kx) \, dx$ $\mathsf{sin}(kx)$) $\lambda x = \int \mathsf{sin}(kx) \ \mathsf{sin}(kx)$ **cos() integration by parts: cos()** $\sin(kx)$ $\left(-\frac{1}{k}\right)$ cos(kx) **cos(kx)(-;**)cos(kx) **cos() sin() sin()** $\sin(kx)$, $x \mapsto \sin(kx) > \frac{1}{2}$ \iff length Hence: $x \mapsto \sqrt{2} \cdot \sin(kx)$ has norm 1

Proposition: (1) $\mathcal{B} = \left(x \mapsto 1, x \mapsto \sqrt{x} \cos(x), x \mapsto \sqrt{x} \cos(2x), x \mapsto \sqrt{x} \cos(3x), ...,$

 $x \mapsto \sqrt{2} \sin(x), \quad x \mapsto \sqrt{2} \sin(2x), \quad x \mapsto \sqrt{2} \sin(3x), \dots$

is an ONB w.r.t. the inner product: $\left\langle \frac{f}{f}, \frac{g}{g} \right\rangle_i = \frac{1}{2\pi} \int_{0}^{\pi} f(x) g(x) dx$

Fourier Transform - Part 4

(2)
$$
\mathcal{B} = \left(x \mapsto \frac{1}{\sqrt{2n}}, x \mapsto \frac{1}{\sqrt{n}} \cos(x), x \mapsto \frac{1}{\sqrt{n}} \cos(2x), x \mapsto \frac{1}{\sqrt{n}} \cos(3x), ..., x \mapsto \frac{1}{\sqrt{n}} \sin(x), x \mapsto \frac{1}{\sqrt{n}} \sin(2x), x \mapsto \frac{1}{\sqrt{n}} \sin(3x), ... \right)
$$

is an ONB w.r.t. the inner product: $\langle f, g \rangle_{2} := \int_{-\pi}^{\pi} f(x) g(x) dx$

 $\mathbf{u}^{\mathrm{max}}$

(3)
$$
\mathcal{B} = \left(x \mapsto \frac{1}{\sqrt{2}}, x \mapsto \cos(x), x \mapsto \cos(2x), x \mapsto \cos(3x), ..., x \mapsto \sin(x), x \mapsto \sin(2x), x \mapsto \sin(3x), ... \right)
$$

is an ONB w.r.t. the inner product: $\langle f, g \rangle_{\mathcal{B}} := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) dx$

For trigonometric polynomials:

$$
\mathcal{J}(x) = \tilde{\alpha}_{0} \frac{1}{\sqrt{2}} + \sum_{k=1}^{n} \alpha_{k} \cos(kx) + \sum_{k=1}^{n} b_{k} \sin(kx) , \quad \alpha_{i}, b_{i} \in \mathbb{R}
$$
\n
$$
\alpha_{k} = \left\langle x \mapsto \cos(kx) , \oint \right\rangle_{3} , \quad \tilde{\alpha}_{0} = \left\langle x \mapsto \frac{1}{\sqrt{2}}, \oint \right\rangle_{3}
$$
\n
$$
b_{k} = \left\langle x \mapsto \sin(kx) , \oint \right\rangle_{3} , \quad \tilde{\alpha}_{0} = \left\langle x \mapsto \frac{1}{\sqrt{2}}, \oint \right\rangle_{3}
$$
\n
$$
\text{trigonometric polynomials with basis: } \text{with basis: } \text{ with basis: } \mathcal{B} = (h_{1}, h_{2},..., h_{N})
$$
\n
$$
\alpha_{1} \mapsto \mathbb{R}
$$
\n
$$
\mathcal{U} \mapsto \text{periodic } + \text{integrable} \quad \text{orthogonal projection } = \sum_{k=1}^{N} h_{k} \left\langle h_{k}, \beta \right\rangle
$$

Fourier Transform - Part 5

$$
\mathcal{F}_{2_{\pi-\text{per}}}(\mathbb{R}, \mathbb{C}) = \left\{ f : \mathbb{R} \to \mathbb{C} \mid f(x + 2\pi) = f(x) \text{ for all } x \in \mathbb{R} \right\}
$$

$$
\mathcal{P}_{2r\text{-per}}(\mathbb{R}, \mathbb{C}) := \text{Span}\left(x \mapsto \frac{1}{\sqrt{2}}, x \mapsto \cos(x), x \mapsto \cos(2x), x \mapsto \cos(3x), ...,
$$
\n
$$
x \mapsto \sin(x), x \mapsto \sin(2x), x \mapsto \sin(3x), ...
$$
\n
$$
\Leftrightarrow \text{inner product } \langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \overline{f(x)} g(x) dx
$$

Let's take integrable functions:

<u>solution</u>: equivalence relation $f \sim g$: \iff $\|f - g\|_{1} = 0$ **set of all equivalence classes: per per**

 $|| [f] ||_1 := ||f||_1$ **norm!**

$$
\mathcal{L}_{2n-per}^{1}(\mathbb{R}, \mathbb{C}) = \left\{ f \in \mathcal{F}_{2n-per}(\mathbb{R}, \mathbb{C}) \mid \int_{-\pi}^{\pi} |f(x)| dx < \infty \right\}
$$

\n
$$
\downarrow
$$
 complex vector space
Lebesgue measure on [- π , π]

$$
\begin{array}{ll}\n\text{norm?} & \|f\|_{1} := \int_{-\pi}^{\pi} |f(x)| \, dx & \text{problem:} \\
& \downarrow & \downarrow & \downarrow \\
\text{for all } x \text{ norm on } \mathcal{L}_{2\pi-\text{per}}^1(\mathbb{R}, \mathbb{C}) & \text{where } x \text{ is a constant.}\n\end{array}
$$

complex vector space

identify: per per

Let's take square-integrable functions:

$$
\mathcal{L}_{2\pi-\text{per}}^{2}(\mathbb{R}, \mathbb{C}) = \left\{ f \in \mathcal{F}_{2\pi-\text{per}}(\mathbb{R}, \mathbb{C}) \mid \int_{-\pi}^{\pi} |f(x)|^{2} dx < \infty \right\}
$$

norm?

$$
\|f\|_{2} := \sqrt{\int_{-\pi}^{\pi} |f(x)|^{2} dx}
$$

<u>solution</u>: equivalence relation $f \sim g$: \iff $\|f - g\|_2 = 0$ **set of all equivalence classes: per per complex vector space with inner product**

The Bright Side of Mathematics - https://tbsom.de/s/ft

Fourier Transform - Part 6

$$
\begin{array}{lll}\n\text{We know:} & \mathcal{L}_{2_{\pi-\text{per}}}^{\mathbf{1}}(\mathbb{R},\mathbb{C}) \supseteq \mathcal{L}_{2_{\pi-\text{per}}}^{\mathbf{2}}(\mathbb{R},\mathbb{C}) \supseteq \mathcal{P}_{2_{\pi-\text{per}}}(\mathbb{R},\mathbb{C}) \\
& & \downarrow \\
& & \text{inner product: } \left\langle \varphi, g \right\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \overline{f(x)} \cdot g(x) \, dx \\
\text{Orthogonality:} & \mathcal{B}_{n} = \left(x \mapsto \frac{1}{\sqrt{2}}, x \mapsto \cos(x), x \mapsto \cos(2x), \dots, x \mapsto \cos(nx) \\
& & \downarrow \\
& & \downarrow \\
& & \text{ans in } \mathcal{L}_{2_{\pi-\text{per}}}(\mathbb{R},\mathbb{C}) \quad \text{for every } n \in \mathbb{N}\n\end{array}
$$

minimized distance! U_n finite-dimensional subspace spanned by B_n \int write: $B_n = (h_1, h_2, ..., h_N)$, $N = 2n + 1$ orthogonal projection of f onto \mathcal{U}_n : $J_n(f) = \sum_{k=1}^N h_k \left\langle h_{k} , f \right\rangle$ **Fourier coefficients**

Definition:

$$
\overline{J_n}(f)(x) = \tilde{a}_0 \frac{1}{\sqrt{2}} + \sum_{k=1}^{n} a_k \cos(k \cdot x) + \sum_{k=1}^{n} b_k \sin(k \cdot x)
$$

with $\tilde{a}_0 = \left\langle x \mapsto \frac{1}{\sqrt{2}}, f \right\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{\sqrt{2}} f(x) dx$

$$
a_{k} = \left\langle x \mapsto \cos(k \cdot x) \, , \, f \right\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(k \cdot x) f(x) dx
$$

$$
b_{k} = \left\langle x \mapsto \sin(k \cdot x) \, , \, f \right\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(k \cdot x) f(x) dx
$$

$$
b_{k} \mapsto \overline{f_{k}}(f)(x) \qquad (\text{with } x \in \mathbb{R})
$$

The map
$$
h \mapsto \bigcup_{n} (f)(x)
$$
 (with $x \in \mathbb{R}$)
is called the **Fourier series of** $\bigcup_{2r-per}^{n} (\mathbb{R}, \mathbb{C})$ (can be extended to $\bigcup_{2r-per} (\mathbb{R}, \mathbb{C})$)

$$
\text{Example: } \quad \oint: \mathbb{R} \to \mathbb{C} \quad, \quad \oint(x) = \left\{ \begin{array}{ccc} 1 & x \in (-\tilde{\pi}, 0) \\ 0 & x \in [0, \pi] \end{array} \right\} \longrightarrow
$$

$$
\widetilde{\alpha}_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{\sqrt{2}} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} \frac{1}{\sqrt{2}} dx = \frac{1}{\sqrt{2}}
$$

$$
\alpha_k = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(k \cdot x) f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} \cos(k \cdot x) dx = 0
$$

$$
b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(k \cdot x) f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} \sin(k \cdot x) dx = \frac{1}{\pi} \left(-\frac{1}{k} \cos(k \cdot x) \right) \Big|_{-\pi}^{0}
$$

$$
= \begin{cases} 0, & k \text{ even} \\ -\frac{2}{\pi k}, & k \text{ odd} \end{cases}
$$

Fourier series: $\frac{1}{2}$ + $\frac{1}{2}$

$$
\frac{-2}{\pi} \sin(x) + \frac{-2}{\pi^3} \cdot \sin(3 \cdot x) + \frac{-2}{\pi^5} \cdot \sin(5 \cdot x) + \cdots
$$

Fourier Transform – Part 7

\n
$$
\oint \in L_{x-\omega}^{2}(\mathbb{R}, \mathbb{C}) \xrightarrow{\text{orthogonal product of } x \text{ real product}} \mathcal{F}_{n}(f)
$$
\n
$$
\xrightarrow{\text{trigonometric polynomial}} \text{constrained functions}
$$
\n
$$
\xrightarrow{\text{disponential functions}}
$$
\n
$$
\text{Example:}
$$
\n
$$
A \cdot \cos(x) + \mathbb{J} \cdot \cos(2x) + \mathbb{C} \sin(2x), \qquad A, B, C \in \mathbb{C}
$$
\n
$$
= \frac{A}{2} (e^{ix} + e^{-ix}) + \frac{B}{2} (e^{i2x} + e^{-i2x}) + \frac{C}{2i} (e^{i2x} - e^{-i2x})
$$
\n
$$
= \frac{A}{2} \cdot e^{ix} + \frac{A}{2} \cdot e^{-ix} + (\frac{B}{2} + \frac{C}{2i}) e^{i2x} + (\frac{B}{2} - \frac{C}{2i}) e^{-i2x}
$$
\n
$$
\xrightarrow{\text{complex linear combination}}
$$

The Bright Side of Mathematics - https://tbsom.de/s/ft

Example:

Remember: per In

$$
Span\left(x \mapsto \frac{1}{\sqrt{2}}, x \mapsto cos(x), x \mapsto cos(2x), ..., x \mapsto cos(nx),
$$

$$
x \mapsto sin(x), x \mapsto sin(2x), x \mapsto sin(3x), ..., x \mapsto sin(nx)
$$

$$
= \text{Span}\left(x \mapsto e^{-\mathbf{i}nx}, x \mapsto e^{-\mathbf{i}x}, x \mapsto e^{\mathbf{i}0\cdot x}, x \mapsto e^{\mathbf{i}x}, x \mapsto e^{\mathbf{i}nx}\right)
$$

$$
\begin{array}{lll}\n\text{and} & \widetilde{a}_0 \frac{1}{\sqrt{2}} + \sum_{k=1}^{n} a_k \cos(k \cdot x) + \sum_{k=1}^{n} b_k \sin(k \cdot x) & = \sum_{k=n}^{n} C_k e^{ikx} \\
\text{with} & C_k = \begin{cases}\n\frac{1}{2} \left(a_k + \frac{b_k}{i} \right), & \text{for } k > 0 \\
\frac{a_0 \frac{1}{\sqrt{2}}}{2} & \text{for } k = 0 \\
\frac{1}{2} \left(a_{-k} - \frac{b_{-k}}{i} \right), & \text{for } k < 0\n\end{cases}\n\end{array}
$$

Result: Take
$$
\underline{L}_{2x\text{-per}}^2(\mathbb{R}, \mathbb{C}) \supseteq P_{2x\text{-per}}(\mathbb{R}, \mathbb{C})
$$

with inner product: $\langle f, g \rangle = \frac{1}{2\pi} \int_{\pi}^{\pi} \overline{f(x)} \cdot g(x) dx$

best factor for exponential functions

The map $h \mapsto \overline{J}_n(f)$ is called the <u>Fourier series</u> of $\overline{f} \in L^2_{2r-\text{per}}(\mathbb{R}, \mathbb{C})$ **(with complex coefficients)**

$$
\begin{array}{ll}\n\text{ONS:} & \iint_{n} = \left(x \mapsto 1, x \mapsto \overline{\text{F}} \cos(x), x \mapsto \overline{\text{F}} \cos(2x), x \mapsto \overline{\text{F}} \cos(3x), \dots, x \mapsto \overline{\text{F}} \cos(nx), x \mapsto \overline{\text{F}} \sin(x), x \mapsto \overline{\text{F}} \sin(2x), x \mapsto \overline{\text{F}} \sin(3x), \dots, x \mapsto \overline{\text{F}} \sin(nx) \right) \\
\text{ONS:} & \iint_{n} = \left(x \mapsto e^{ikx} \right)_{k = -h, \dots, n} = \left(e_{k} \right)_{k = -h, \dots, n} \xrightarrow{\text{theq span the same subspace}} \\
\text{For } f \in L^{2}_{2x \text{per}}(R, \mathbb{C}): & \iint_{n} (f) = \sum_{k = -h}^{h} e_{k} \underbrace{\langle e_{k}, f \rangle}_{\text{Fourier coefficients}} \\
\implies \overline{U}_{n}(f)(x) = \sum_{k = -h}^{h} C_{k} e^{ikx}, c_{k} = \frac{1}{2\pi} \int_{-\pi}^{0} e^{-ikx} f(x) dx\n\end{array}
$$

Fourier Transform - Part 8 Fourier series: per per trigonometric polynomial Geometric picture: For per per orthogonal projection normal component Question: What happens for Proposition: per with inner product and ONS given by

(b)
$$
\sum_{k=1}^{n} |C_{k}|^{2} \le ||\mathfrak{f}||^{2} \text{ for all } n \text{ (Bessel's inequality)}
$$

$$
\left(\implies \sum_{k=-\infty}^{\infty} |C_{k}|^{2} \le ||\mathfrak{f}||^{2} \text{ and } C_{k} \stackrel{k \to \infty}{\longrightarrow} 0\right)
$$

(c)
$$
||\mathfrak{f} - \mathcal{F}_{n}(\mathfrak{f})|| \stackrel{n \to \infty}{\longrightarrow} 0 \iff \sum_{k=-\infty}^{\infty} |C_{k}|^{2} = ||\mathfrak{f}||^{2}
$$

(Parseval's identity)

Fourier Transform	Part 9
$L_{B_{r+2}}^1(\mathbb{R}, \mathbb{C})$ has $0NS\ (\dots, e_{-2}, e_{-1}, e_{0}, e_{1}, e_{1}, \dots)$ given by $e_k: X \mapsto e^{ikX}$	
\rightarrow Fourier series	$\overline{J_n}(\mathbb{F}) = \sum_{k=-n}^{n} e_k \langle e_k, \mathbb{F} \rangle$
Parseval's identity:	$ \mathbb{F} ^2 = \sum_{k=-n}^{\infty} \langle e_k, \mathbb{F} \rangle ^2$
$\langle \implies \mathbb{F} - \overline{J_n}(\mathbb{F}) \xrightarrow{n \to \infty} 0$	
Consider two functions:	$\mathbb{F} \cdot \mathbb{J} \in L_{B_{r+2}}^1(\mathbb{R}, \mathbb{C})$
$\langle \mathbb{F} \cdot \mathbb{J} \rangle \iff \text{formula with Fourier coefficients?}$	
$\langle \mathbb{F} \cdot \mathbb{J} \rangle \iff \text{formula with Fourier coefficients?}$	
$\mathbb{F} = \overline{J_n}(\mathbb{F}) + \mathbb{F}_n$ with $ \mathbb{F}_n \xrightarrow{n \to \infty} 0$	
$\mathbb{J} = \overline{J_n}(\mathbb{F}) + \mathbb{F}_n$ with $ \mathbb{F}_n \xrightarrow{n \to \infty} 0$	
$\mathbb{J} = \overline{J_n}(\mathbb{F}) + \mathbb{F}_n$ with $ \mathbb{F}_n \xrightarrow{n \to \infty} 0$	
We have:	$\langle \overline{J_n}(\mathbb{F}) \rangle, \mathbb{F}_n \rangle \leq \mathbb{F}_n(\mathbb{F}) \mathbb{F}_n \xrightarrow{n \to \$

$$
\langle f, g \rangle = \langle \overline{J_n}(f) + r_n, \overline{J_n}(g) + \tilde{r}_n \rangle
$$

\n
$$
= \langle \overline{J_n}(f), \overline{J_n}(g) \rangle + \langle r_n, \overline{J_n}(g) \rangle + \langle \overline{J_n}(f), \tilde{r}_n \rangle + \langle r_n, \tilde{r}_n \rangle
$$
\n
$$
= \langle \sum_{k=n}^{n} e_k \langle e_k, f \rangle + \sum_{l=n}^{n} e_l \langle e_l, g \rangle \rangle + \langle f \rangle + \langle f \rangle
$$

$$
= \sum_{k=-n}^{n} \sum_{l=-n}^{n} \overline{\langle e_{k}, f \rangle} \langle e_{l}, g \rangle \langle e_{k}, e_{l} \rangle + (*)
$$

$$
= \sum_{k=-n}^{n} \langle f, e_{k} \rangle \langle e_{k}, g \rangle + (*)
$$

$$
\xrightarrow{n \to \infty} \sum_{k=-\infty}^{\infty} \langle f, e_{k} \rangle \langle e_{k}, g \rangle
$$

Remember the equivalent statements: per with ONS (a) Parseval's identity: $\left\| \int f \right\|^2 = \sum^{\infty} \left| \left\langle e_k, f \right\rangle \right|^2$ (b) ONS is complete: $\|\int -\sum_{k=1}^{n} e_k \langle e_k, f \rangle \| \xrightarrow{\text{h} \rightarrow \infty} 0$ $(f = \sum_{k=-\infty}^{\infty} e_k \langle e_k, f \rangle)$ nner product:
 $\langle f, g \rangle = \sum_{k=-\infty}^{\infty} \langle f, e_k \rangle \langle e_k, g \rangle$ $\left(\sum_{k=-\infty}^{\infty} |e_k \rangle \langle e_k| = 1 \right)$ **(c) ONS gives inner product: (d) ONS is total: Span is dense in per** $\left(\frac{\cdot}{2}, \frac{\cdot}{2}\right)$ $\forall f \in L^2_{2r\text{-per}}(\mathbb{R},\mathbb{C}) \quad \forall \varepsilon>0 \quad \exists \text{N}\in\mathbb{N}, \ \lambda_1,\lambda_2,\ldots,\lambda_N \in \mathbb{C}$ **infinitely** $\|\mathcal{F}-\sum_{k=m}^{N}\lambda_{k}e_{k}\|<\varepsilon$ **many from** $Span(E_k)$

Fourier series for this example:

$$
C_{k} = \left\langle e_{k}, h_{\alpha} \right\rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ikx} h_{\alpha}(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\alpha} e^{-ikx} dx
$$

$$
= \begin{cases} \frac{\alpha + \pi}{2\pi}, & k = 0 \\ \frac{1}{2\pi (-ik)} (e^{-ik\alpha} - e^{-ik\pi}), & k \neq 0 \end{cases}
$$

Visualization:

$$
a_k = 2 \cdot \text{Re}(c_k)
$$

$b_k = -2 \cdot \text{Im}(c_k)$

Show Parseval's identity:

$$
k \neq 0: \left| C_{k} \right|^{2} = \frac{1}{2\pi (4k)} \left(e^{-ik\alpha} - e^{ik\pi} \right) \frac{1}{2\pi (4k)} \left(e^{-ik\alpha} - e^{ik\pi} \right)
$$
\n
$$
= \frac{1}{4\pi^{2}k^{2}} \cdot \left(e^{-ik\alpha} - e^{ik\pi} \right) \cdot \left(e^{ik\alpha} - e^{-ik\pi} \right)
$$
\n
$$
= \frac{1}{4\pi^{2}k^{2}} \cdot \left(1 - e^{ik(\pi + \alpha)} - e^{-ik(\pi + \alpha)} + 1 \right)
$$
\n
$$
= \frac{1}{4\pi^{2}k^{2}} \cdot \left(2 - 2 \cos(k(\pi + \alpha)) \right) = \frac{1}{2\pi^{2}k^{2}} \cdot \left(1 - \cos(k(\pi + \alpha)) \right)
$$
\n
$$
\implies \sum_{k=-n}^{n} \left| C_{k} \right|^{2} = \left(\frac{\alpha + \pi}{2\pi} \right)^{2} + \frac{1}{2\pi^{2}} \left(\sum_{k=-n}^{n} \frac{1}{k^{2}} - \sum_{k=-n}^{n} \frac{\cos(k(\pi + \alpha))}{k^{2}} \right)
$$
\n
$$
= \left(\frac{\alpha + \pi}{2\pi} \right)^{2} + \frac{1}{\pi^{2}} \left(\sum_{k=-n}^{n} \frac{1}{k^{2}} - \sum_{k=1}^{n} \frac{\cos(k(\pi + \alpha))}{k^{2}} \right)
$$

General formula:
$$
x \in [0, 2\pi]
$$

$$
\sum_{k=1}^{\infty} \frac{\cos(kx)}{k^k} = \frac{(x - \pi)^2}{4} - \frac{\pi^2}{12}
$$

$$
\sum_{k=1}^{\infty} \frac{\cos(kx)}{k} = \frac{(x - \pi)^2}{4} - \frac{\pi^2}{12}
$$

$$
\sum_{k=1}^{\infty} \frac{\pi^2}{6} = \frac{\pi^2}{4} - \frac{\pi^2}{12}
$$

$$
\Rightarrow \sum_{k=-\infty}^{\infty} |C_k|^2 = \left(\frac{\alpha + \widetilde{\pi}}{2\widetilde{\pi}}\right)^2 + \frac{1}{\widetilde{\pi}^2} \left(\frac{\widetilde{\pi}^2}{6} - \frac{\alpha^2}{4} + \frac{\widetilde{\pi}^2}{12}\right)
$$

$$
- \left(\frac{\alpha + \widetilde{\pi}}{2}\right)^2 + \frac{1}{\widetilde{\pi}^2} - \frac{\alpha^2}{4} = \frac{2\alpha\widetilde{\pi} + \widetilde{\pi}^2}{2\widetilde{\pi}^2} + \frac{1}{\widetilde{\pi}^2}
$$

The Bright Side of Mathematics - https://tbsom.de/s/ft

Fourier Transform = Part 11

\nLet's prove:

\n
$$
\sum_{k=1}^{\infty} \frac{\cos(kx)}{k} = \frac{(x-\pi)^{2}}{4} - \frac{\pi^{3}}{12} \quad , \quad x \in [0, 2\pi]
$$
\nNote:

\n
$$
\frac{1}{1} + \sum_{k=1}^{n} \cos(kx) = \frac{1}{1} + \sum_{k=1}^{n} \frac{1}{2} \cdot (e^{ikx} + e^{-ikx}) = \frac{1}{2} \sum_{k=1}^{n} e^{ikx}
$$
\n
$$
= \frac{1}{2} e^{\frac{-i\pi x}{k}} \sum_{k=0}^{2n} \frac{e^{ikx}}{4^{k}} \quad |e^{-ix} + e^{-ix}|
$$
\n
$$
= \frac{1}{2} e^{\frac{-i\pi x}{k}} \frac{1 - \frac{1}{4}e^{i\pi x}}{1 - \frac{1}{4}} \quad \text{geometric sum formula } 4 \neq 1
$$
\n
$$
= \frac{1}{2} e^{\frac{-i\pi x}{k}} \cdot \frac{1 - \frac{1}{4}e^{i\pi}}{1 - e^{ix}} \cdot \frac{1 - \frac{1}{4}e^{i\pi}}{-e^{i\pi}x}
$$
\n
$$
= \frac{1}{2} e^{\frac{i(\pi + 1)x}{2} \cdot \frac{-i(\pi + 1)x}{2}} \cdot \frac{-e^{-i\pi x}}{-e^{i\pi}x} \cdot \frac{1}{\frac{1}{2}e^{-i\pi}} = \frac{1}{2} \cdot \frac{\sin((\pi + 1)x)}{\sin(\frac{1}{2}x)}
$$
\nFrom \mathbb{R}^2 and we have uniform convergence on interval $[c, 2\pi - \varepsilon], c > 0$.

Proof: sin

$$
\sum_{k=1}^{n} \frac{\sin(kx)}{k} = \sum_{k=1}^{n} \int_{\pi}^{x} \cos(kt) \, dt = \int_{\pi}^{x} \sum_{k=1}^{n} \cos(kt) \, dt
$$

$$
= \int_{\pi}^{x} \left(\frac{1}{2} \frac{\sin((n+\frac{1}{2})t)}{\sin(\frac{1}{2}t)} - \frac{1}{2} \right) dt
$$

$$
= \int_{\pi}^{x} \frac{\sin((n+\frac{1}{2})t)}{2 \sin(\frac{1}{2}t)} dt - \frac{1}{2}(x-\pi)
$$

integration by parts:
$$
\int_{n}(x) = \int_{\pi}^{x} \frac{1}{2 \sin(\frac{1}{2}t)} \cdot \frac{\sin(\pi t)t}{x} dt
$$

\n
$$
V = \frac{1}{n + \frac{1}{t}} \cdot (t) \cdot cos(\pi t)t + C
$$

\n
$$
\int_{n}^{x} f(x) dx = \frac{1}{n + \frac{1}{t}} \cdot \frac{(1) cos(\pi t)t}{2 sin(\frac{1}{2}t)} \Big|_{n}^{x} - \int_{\pi}^{x} \frac{1}{n + \frac{1}{t}} \cdot \frac{(1) \cdot cos(\pi t)t cos(\frac{1}{2}t)}{(sin(\frac{1}{2}t))^{2}} dt
$$

\n
$$
= \frac{1}{n + \frac{1}{t}} \cdot \left(\frac{1}{2} cos(\frac{1}{2}t) + x) \right) - \frac{1}{t} \int_{\pi}^{x} \frac{cos(\pi t)t cos(\frac{1}{2}t)}{(sin(\frac{1}{2}t))^{2}} dt
$$

\nFor $\varepsilon > 0$, choose $x \in [\varepsilon, 2\pi - \varepsilon]$:
\n
$$
\int_{-\infty}^{x} \frac{sin(\frac{1}{2}x)}{x} dx = \frac{sin(\frac{1}{2}t)}{x} - \frac{1}{t} \int_{-\infty}^{x} \frac{cos(\pi t)t cos(\frac{1}{2}t)}{(sin(\frac{1}{2}t))^{2}} dt
$$

\n
$$
\int_{-\infty}^{x} \frac{sin(\frac{1}{2}t)}{x} dx = \frac{1}{t} \int_{-\infty}^{x} \frac{sin(\frac{1}{2}t)}{x} dx
$$

\n
$$
\int_{-\infty}^{x} \frac{sin(\frac{1}{2}t)}{x} dx = \frac{1}{t} \int_{-\infty}^{x} \frac{sin(\frac{1}{2}t)}{x} dx
$$

\n
$$
\int_{-\infty}^{x} \frac{sin(\frac{1}{2}x)}{x} dx = \frac{1}{t} \int_{-\infty}^{x} \frac{sin(\frac{1}{2}x)}{x} dx
$$

\n
$$
\int_{-\infty}^{x} \frac{sin(\frac{1}{2}x)}{x} dx = \frac{1}{t} \int_{-\infty}^{x} \frac{sin(\frac
$$

 \Box

Proof: For
$$
\varepsilon > 0
$$
, $x, x_0 \in [\varepsilon, 2\pi - \varepsilon]$: (use Lemma)
\n
$$
\int_{x_0}^{x} \sum_{k=1}^{\infty} \frac{\sin(kt)}{k} dt = \int_{x_0}^{x} \frac{\pi - t}{2} dt = -\frac{(\pi - t)^2}{4} \Big|_{x_0}^{x} = -\frac{(x - \pi)^2}{4} + \frac{(x_0 - \pi)^2}{4}
$$
\nuniform convergence

$$
\sum_{k=1}^{\infty} \int_{x_0}^{\infty} \frac{\sin(kt)}{k} dt = \sum_{k=1}^{\infty} -\frac{\cos(kt)}{k^2} \Big|_{x_0}^{x} = - \sum_{k=1}^{\infty} \frac{\cos(kx)}{k^2} + C_1
$$

$$
\Rightarrow \sum_{k=1}^{\infty} \frac{\cos(kx)}{k^2} = \frac{(x-\pi)^2}{4} + C \qquad \text{calculate it:}
$$

 \Rightarrow still uniform convergence on $[\epsilon, 2\pi - \epsilon]$

We know more: (1) cos() uniformly convergent on

(1)
$$
\sum_{k=1}^{\infty} \frac{\cos(kx)}{k^{2}}
$$
 uniformly convergent on $[0, 2\pi]$
by Weierstrass M-test since $\left|\frac{\cos(kx)}{k^{2}}\right| \le \frac{1}{k^{2}}$
 $\implies [0, 2\pi] \ni x \mapsto \sum_{k=1}^{\infty} \frac{\cos(kx)}{k^{2}}$ continuous function

$$
\begin{array}{cc} (2) & [0,2\pi] \ni x \mapsto & \frac{(x-\pi)^2}{4} + C & \text{continuous function} \end{array}
$$

(3)
$$
\sum_{k=1}^{\infty} \frac{\cos(kx)}{k^2} = \frac{(x-\pi)^2}{4} + C_1
$$
 for all $X \in (0, 2\pi)$
\n
$$
\implies \sum_{k=1}^{\infty} \frac{\cos(kx)}{k^2} = \frac{(x-\pi)^2}{4} + C_1
$$
 uniformly convergent on [0, 2 π]

Find C:
$$
\int_{0}^{2\pi} \sum_{k=1}^{\infty} \frac{\cos(kx)}{k^{2}} dx = \int_{0}^{2\pi} \left(\frac{(x-\pi)^{2}}{4} + C \right) dx = \frac{(x-\pi)^{3}}{12} \Big|_{0}^{2\pi} + 2\pi \cdot C
$$

\n
$$
\int_{0}^{\infty} \lim_{x \to 1} \int_{0}^{2\pi} \frac{\cos(kx)}{k^{2}} dx = 0 \implies C_{1} = -\frac{\pi^{2}}{12}
$$

 $-\pi$

$$
c_k = \left\langle e_{k}, g \right\rangle = \left\langle e_k, \sum_{i=1}^m \lambda_i h_{a_i} \right\rangle = \sum_{i=1}^m \lambda_i \left\langle e_{k}, h_{a_i} \right\rangle
$$

$$
|c_{k}|^{2} = \overline{c}_{k} c_{k} = \frac{\sum_{j=1}^{m} \lambda_{j} \langle e_{k}, h_{a_{j}} \rangle \cdot \sum_{i=1}^{m} \lambda_{i} \langle e_{k}, h_{a_{i}} \rangle}{\sum_{j=1}^{m} \sum_{i=1}^{m} \overline{\lambda_{j}} \lambda_{i} \langle h_{a_{j}}, e_{k} \rangle \langle e_{k}, h_{a_{i}} \rangle}
$$
\n
$$
= \sum_{j=1}^{m} \sum_{i=1}^{m} \overline{\lambda_{j}} \lambda_{i} \langle h_{a_{j}}, e_{k} \rangle \langle e_{k}, h_{a_{i}} \rangle
$$
\n
$$
\sum_{k=-n}^{n} |c_{k}|^{2} = \sum_{i,j=1}^{m} \overline{\lambda_{j}} \lambda_{i} (\sum_{k=-n}^{n} \langle h_{a_{j}}, e_{k} \rangle \langle e_{k}, h_{a_{i}} \rangle)
$$
\n
$$
\sum_{k=-\infty}^{\infty} (\sum_{k=0}^{\infty} |e_{k} \rangle \langle e_{k}| = 1)
$$
\n
$$
\langle h_{a_{j}}, h_{a_{i}} \rangle
$$
\nwe have Parseval's identity for $h_{a_{j}}$ and $h_{a_{i}}$ \n
$$
\sum_{k=-\infty}^{\infty} |c_{k}|^{2} = \sum_{i,j=1}^{m} \overline{\lambda_{j}} \overline{\lambda_{i}} \langle h_{a_{j}}, h_{a_{i}} \rangle = \langle \sum_{j=1}^{m} \lambda_{j} \cdot h_{a_{j}}, \sum_{i=1}^{m} \lambda_{i} \cdot h_{a_{i}} \rangle
$$

$$
=\left\langle \left. g\right. ,g\right\rangle =\left\Vert g\right\Vert ^{2}
$$

Result: per Parseval's identity holds for per

Fourier Transform - Part 13

Theorem:
$$
L_{n-m}^{1}(\mathbb{R}, \mathbb{C})
$$
 with inner product $\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{f(x)} \cdot g(x) dx$
\nand ONS (..., e₋₂, e₋₁, e₀, e₁, e₂, ...) given by $e_{k}: x \mapsto e^{ikx}$.
\nFor $f \in L_{n-m}^{1}(\mathbb{R}, \mathbb{C})$ define: $\overline{J}_{n}(f) = \sum_{k=n}^{n} e_{k} \langle e_{k}, f \rangle$.
\nThen: $|| f - \overline{J}_{n}(f)|| \sum_{k=n}^{n-m} 0$
\n $\left(\text{equivalent to Parseval's identity: } || f ||^{2} = \sum_{k=n}^{\infty} |\langle e_{k}, f \rangle|^{2} \right)$
\nFact: Continuous functions are dense in $L_{n-m}^{1}(\mathbb{R}, \mathbb{C})$, which means:
\nFor $f \in L_{n-m}^{1}(\mathbb{R}, \mathbb{C})$ and $\mathbb{E} > 0$, there is a 2π -periodic continuous function
\n $g: \mathbb{R} \to \mathbb{C}$ with $|| f - g || \le \mathbb{E}$.
\n
\nProof: Let $\mathbb{E} > 0$, $f: [-\pi, \pi] \to \mathbb{C}$ square integrable.
\nThen there is a continuous function $g: [-\pi, \pi] \to \mathbb{C}$ with $|| f - g || \le \mathbb{E}$.

$$
C_j := \sup \{g(x) \mid x \in \overline{I}_j\}
$$

define step function:
 $h(x) = C_j$ for $x \in I_j$

We get:
$$
|g(x) - h(x)| = |g(x) - g(y)|
$$
 for $y \in \overline{I_j}$
 $\times \overline{I_j}$
 $\times \overline{I_j}$ because $|x-y| < \delta$

In total:
$$
||f-h|| \le ||f-g|| + ||g-h|| < \int_{\epsilon}^{\epsilon}
$$
 constant

$$
= (\int_{\epsilon}^{1} |g(x)-h(x)|^{2})^{2}
$$

Theorem (see above): For $\frac{1}{2} \in L_{2r\text{-per}}$

<u>Proof:</u> Let $\epsilon > 0$, $\frac{1}{2} \epsilon \downarrow_{\text{2F-per}} (\mathbb{R}, \mathbb{C})$. Choose _{per}(K,C) with

Then:
$$
\|f - \overline{J}_n(f)\| = \|f + h - h - \overline{J}_n(f) + \overline{J}_n(h) - \overline{J}_n(h)\|
$$

Pythagorean theorem:

$$
\left\| \left(\mathfrak{f} - \mathfrak{h} \right) - \mathfrak{F}_{n}(\mathfrak{f} - \mathfrak{h}) \right\|^{2} + \left\| \mathfrak{F}_{n}(\mathfrak{f} - \mathfrak{h}) \right\|^{2} = \left\| \left(\mathfrak{f} - \mathfrak{h} \right) \right\|^{2} \sum_{\mathfrak{f} \in \mathcal{F}_{n}(\mathfrak{f} - \mathfrak{h}) - \mathfrak{F}_{n}(\mathfrak{f} - \mathfrak{h})}
$$

 U_n $\left(\frac{1}{J}-h\right)$

 \Box

 \Box

 \Rightarrow $\lim_{n\to\infty}$ $\| f - \mathcal{F}_n(f) \| = 0$

$$
\leq ||(f-h) - \overline{J_n}(f-h)|| + ||h - \overline{J_n}(h)||
$$

an theorem:

$$
\leq ||(f-h)|| < \varepsilon
$$

 \Rightarrow $\|f\|_{l^1} \leq \|f\|_{\infty}$

Theorem: $f: \mathbb{R} \longrightarrow \mathbb{C}$ 2 π -periodic <u>continuous</u> function.

Assume there are finitely many points $(a_1, a_1, ..., a_m)$ inside the interval $[-\pi,\hat{\pi}]$ such that:

$$
\mathcal{F}|_{\left[\mathbf{a}_{\mathbf{j}},\,\mathbf{a}_{\mathbf{j}+1}\right]}\in\mathbb{C}^{1} \quad \text{for all} \quad \mathbf{j}\in\left\{0,1,\ldots,\mathbf{m}\right\}
$$

$$
\underline{\text{Then:}} \quad \left\| f - \overline{J_n}(f) \right\|_{\infty} \xrightarrow{n \to \infty} 0 \qquad \qquad \overline{J_n}(f) = \sum_{k=-n}^{n} e_k \langle e_k, f \rangle
$$
\n
$$
\langle f, g \rangle = \frac{1}{2\pi} \int_{\pi}^{\pi} \overline{f(x)} \cdot g(x) dx
$$

The Bright Side of Mathematics - https://tbsom.de/s/ft

General

Fourier Transform - Part 15

$$
= \frac{1}{i\pi} \left(0 + \frac{1}{i\kappa} \int_{-\pi}^{\pi} e^{-ikx} \widetilde{f}(x) dx \right) = \frac{1}{i\kappa} \left\langle e_{\kappa}, \widetilde{f} \right\rangle
$$

inequality for real numbers: $x \cdot y \le \frac{x^2 + y^2}{2}$

$$
|C_k| = \frac{1}{k} \left| \left\langle e_k, \widetilde{f} \right\rangle \right| \leq \frac{1}{\iota} \left(\frac{1}{k^{\iota}} + \left| \left\langle e_k, \widetilde{f} \right\rangle \right|^{\iota} \right)
$$

$$
\sum_{\substack{k=-\infty \ k \to \infty}}^{\infty} |C_{k}| \leq \sum_{\substack{k=-\infty \ k \to \infty}}^{\infty} \frac{1}{k^{k}} + \sum_{\substack{k=-\infty \ k \to \infty}}^{\infty} |\langle e_{k}, \tilde{f} \rangle|^{2} < \infty
$$
\n
$$
\overline{J_{n}}(f)(x) = \sum_{k=-\infty}^{n} e^{ikx} \cdot C_{k} \quad \text{with } |f_{k}(x)| \leq M_{k} =: |C_{k}|, \sum_{k=-\infty}^{\infty} M_{k} < \infty
$$
\n
$$
\text{Weierstrass} \quad \overline{f_{k}(x)}
$$
\n
$$
M-Test \quad \text{and} \quad \overline{f_{k}(x)}
$$
\n
$$
M-Test \quad \text{and} \quad \overline{f_{k}(x)}
$$
\n
$$
M: [-\pi, \pi] \to \mathbb{C}
$$
\n
$$
\text{Status que: } ||\overline{J_{n}}(f) - h||_{\infty} \xrightarrow{h \to \infty} 0, ||\overline{J_{n}}(f) - f||_{L^{1}} \xrightarrow{h \to \infty} 0
$$
\n
$$
\text{More estimates: } ||f - h||_{L^{1}} \leq ||f - \overline{J_{n}}(f)||_{L^{1}} + ||\overline{J_{n}}(f) - h||_{L^{1}}
$$
\n
$$
\xrightarrow{h \to \infty} 0 \text{ continuous}
$$
\n
$$
\text{Hence: } ||f - h||_{L^{1}} = 0 \implies f = h
$$
\n
$$
\text{Conclusion: } ||\overline{J_{n}}(f) - f||_{\infty} \xrightarrow{h \to \infty} 0 \quad \text{(uniform convergence of the Fourier series)}
$$

 \Box

Fourier series:

\n
$$
x^{2} - \pi^{2} = \sum_{k=-\infty}^{\infty} C_{k} e^{ikx} = -\frac{1}{3} \pi^{2} + \sum_{k=-\infty}^{\infty} \frac{2 \cdot (-1)^{k}}{k^{2}} e^{ikx}
$$
\n
$$
= -\frac{1}{3} \pi^{2} + 2 \sum_{k=1}^{\infty} \frac{1}{k^{4}} \frac{(-1)^{k}}{k^{4}} \cos(kx) + i \sin(kx)
$$
\n
$$
= -\frac{1}{3} \pi^{2} + 2 \sum_{k=1}^{\infty} \frac{1}{k^{4}} \cos(kx)
$$
\nFor all $x \in [-\pi, \pi]$: $x^{2} - \frac{1}{3} \pi^{2} = \sum_{k=1}^{\infty} \frac{4}{k^{4}} (-1)^{k} \cos(kx)$ uniformly converges.

\nIn particular for $x = 0$: $-\frac{1}{3} \pi^{2} = \sum_{k=1}^{\infty} \frac{4}{k^{4}} (-1)^{k}$

\n
$$
\implies \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{4}} = -\frac{1}{42} \pi^{2}
$$
\nParseval's identity:

\n
$$
\sum_{k=0}^{\infty} |C_{k}|^{2} = ||\frac{1}{2}||\frac{1}{k^{2}} = \frac{1}{2\pi} \int_{-\infty}^{\infty} (x^{2} - \pi^{2})^{2} dx = \frac{8}{15} \pi^{4}
$$
\n
$$
|C_{0}|^{2} + \sum_{k=0}^{\infty} \frac{1}{k^{4}} = \frac{1}{k^{4}} \pi^{4} = \frac{\pi^{4}}{30}
$$

Fourier coefficients:
$$
C_k := \langle e_k, f \rangle = \frac{1}{i\pi} \int_0^{\pi} e^{-ikx} (\pi - x) dx
$$

$$
= \begin{cases} \frac{\pi}{4} , k = 0 \\ \frac{1}{i\pi} \cdot \left(-\frac{1}{k^2} \left(-i \right)^k - 1 \right) - i \frac{\pi}{k} \end{cases}, k \neq 0
$$

 3.0

 2.5

 2.0

 1.5

 1.0

 0.5

 0.0

Fourier Transform - Part 18

Properties: (1) \mathbb{U}_n has exactly Zn zeros inside the interval

$$
\begin{array}{lll}\n\text{Definition:} & \text{The continuous function } \mathbb{D}_n \colon \mathbb{R} \longrightarrow \mathbb{R}, \text{ } h \in \mathbb{N}, \text{ given by} \\
\mathbb{D}_n(x) = \sum_{k=-n}^{n} e^{ikx} = \int \{+2 \sum_{k=1}^{n} \cos(kx) = \frac{\sin(n+\frac{1}{2})x}{\sin(\frac{1}{2}x)} \\
& \text{is called the Dirichlet term.} \\
\text{is called the Dirichlet term.} \\
\text{for Fourier series:} & \mathbb{F}_n(f)(x) = \sum_{k=-n}^{n} C_k e^{ikx} = \sum_{k=-n}^{n} \frac{1}{2\pi} \int_{\frac{\pi}{2}}^{\pi} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-iky} f(y) dy \text{, } e^{ikx} \\
& = \frac{1}{2\pi} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} f(y) \sum_{k=-n}^{n} e^{ik(x-y)} dy = \frac{1}{2\pi} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} f(y) \mathbb{D}_n(x-y) dy \\
& = \frac{1}{2\pi} \int_{x-\pi}^{x+\pi} f(x-z) \mathbb{D}_n(z) dz = \frac{1}{2\pi} \int_{-\pi}^{\frac{\pi}{2}} \mathbb{D}_n(z) f(x-z) dz \\
& = \left\langle \mathbb{D}_n, f(x-1) \right\rangle = \frac{1}{2\pi} \left(\mathbb{D}_n * f(x) \right) \\
\end{array}
$$

(2)
$$
\int_{-\pi}^{\pi} \mathbb{D}_{n}(x) dx = \int_{-\pi}^{\pi} (1 + e^{ix} + e^{-ix} + e^{2ix} + e^{-2ix} + \dots + e^{nix} + e^{-nix}) dx
$$

$$
= 2\pi \implies \left\langle \mathbb{D}_{n}, 1 \right\rangle = 1
$$

$$
\frac{\sin\left(\frac{1}{2}\pi x\right)\ln\left(x\right)}{\ln\left(\frac{1}{2}x\right)} = \frac{\sin\left(\frac{1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)} \qquad \frac{\sin\left(\frac{1}{2}x\right)}{\pi}
$$
\n
$$
\geq \frac{\sin\left(\frac{1}{2}x\right)}{\frac{1}{2}x} \qquad \text{for all } x > 0
$$
\n
$$
\int_{-\pi}^{\pi} |D_n(x)| dx = 2 \cdot \int_{0}^{\pi} |D_n(x)| dx \geq 2 \cdot \int_{0}^{\pi} \frac{|\sin\left(\frac{1}{2}x\right)|}{x} dx
$$
\n
$$
= 2 \cdot \int_{0}^{\left(\frac{1}{2}x\right)\pi} \frac{|\sin\left(\frac{1}{2}x\right)|}{x} dx \geq 2 \cdot \int_{0}^{\pi} \frac{|\sin\left(\frac{1}{2}x\right)|}{x} dx
$$
\n
$$
= 2 \cdot \int_{0}^{\left(\frac{1}{2}x\right)\pi} \frac{|\sin\left(\frac{1}{2}x\right)|}{x} dx \geq 2 \cdot \int_{0}^{\frac{1}{2}x} \frac{|\sin\left(\frac{1}{2}x\right)|}{x} dx
$$
\n
$$
\geq 2 \cdot \sum_{k=1}^{\frac{1}{2}x} \int_{0}^{\frac{1}{2}x} \frac{|\sin\left(\frac{1}{2}x\right)|}{x} dx
$$
\n
$$
\geq 2 \cdot \sum_{k=1}^{\frac{1}{2}x} \frac{\sin\left(\frac{1}{2}x\right)}{\frac{1}{2}x} dx
$$

Fourier Transform - Part 19
\n**Therefore:**
$$
\oint \mathcal{E} \int_{2r-\rho e\nu}^{2} (\mathbb{R}, \mathbb{C})
$$
, $\hat{x} \in [-\pi, \pi]$ with:
\n $\mathcal{J}(\hat{x}^{-}) := \lim_{\epsilon \to 0} \mathcal{J}(\hat{x} - \epsilon)$ exists, $\lim_{h \to 0} \frac{\mathcal{J}(\hat{x} + h) - \mathcal{J}(\hat{x})}{h}$ exists
\n $\mathcal{J}(\hat{x}^{+}) := \lim_{\epsilon \to 0} \mathcal{J}(\hat{x} + \epsilon)$ exists, $\lim_{h \to 0} \frac{\mathcal{J}(\hat{x} + h) - \mathcal{J}(\hat{x})}{h}$ exists
\n $\lim_{h \to 0} \mathcal{F}_{n}(\hat{y})(\hat{x}) \xrightarrow{n \to \infty} \frac{1}{\mathbb{Z}} (\mathcal{J}(\hat{x}^{+}) + \mathcal{J}(\hat{x}^{-})) =: M$
\n**Proof:** Dirichlet kerne!. $\mathcal{D}_{n}(x) = \frac{\sin((\mu + \frac{1}{2})x)}{\sin(\frac{1}{2}x)}$ gives $\mathcal{F}_{n}(\hat{y})(\hat{x}) = \langle \mathcal{D}_{n}, \mathcal{J}(\hat{x} - \hat{\cdot}) \rangle$
\nand $\langle \mathcal{D}_{n}, \mathcal{M} \rangle = M$
\n $\frac{\sin \mathbb{K}}{\sin(\frac{1}{2}x)} \langle \mathcal{D}_{n}, \mathcal{J}(\hat{x} - \hat{\cdot}) \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathcal{D}_{n}(x) \mathcal{J}(\hat{x} - \hat{x}) dx$
\n $= \frac{1}{2\pi} (\int_{-\pi}^{\pi} \mathcal{D}_{n}(x) \mathcal{J}(\hat{x} - \hat{x}) dx + \int_{\pi}^{\pi} \mathcal{D}_{n}(x) \mathcal{J}(\hat{x} - \hat{x}) dx)$
\n $= \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathcal{D}_{n}(y) \mathcal{J}(\hat{x} + \hat{\cdot}) dy + \mathcal{J}(\hat{D}_{n}(x) \mathcal{J}(\hat{x} - \hat{x}) dx)$
\

Pointwise limit:
$$
\overline{J}_n(f)(\hat{x}) - M = \langle \mathcal{D}_{n,1} f(\hat{x} - \cdot) \rangle - \langle \mathcal{D}_{n,1} M \rangle
$$

\n
$$
= \frac{1}{2\pi} \int_0^{\pi} \mathcal{D}_n(y) \left(f(\hat{x} + y) + f(\hat{x} - y) \right) dy - \frac{1}{2\pi} \int_0^{\pi} \mathcal{D}_n(y) \underline{J} \cdot \underline{M} dy
$$
\n
$$
= \frac{1}{2\pi} \int_0^{\pi} \mathcal{D}_n(y) \left(f(\hat{x} + y) - f(\hat{x} + y) + f(\hat{x} - y) - f(\hat{x} - y) \right) dy
$$
\n
$$
= \frac{1}{2\pi} \int_0^{\pi} \sin((n+1)y) \underbrace{\frac{f(\hat{x} + y) - f(\hat{x} + y) + f(\hat{x} - y) - f(\hat{x} - y)}{f(\hat{x} - y)} dy}
$$
\n
$$
= \frac{1}{2\pi} \int_0^{\pi} \sin((n+1)y) \underbrace{\frac{f(\hat{x} + y) - f(\hat{x} + y) + f(\hat{x} - y) - f(\hat{x} - y)}{g(y)}}_{\text{sum}}
$$
\n
$$
\left(\frac{1}{2\pi} \cdot \left(e^{i \pi y} e^{i \frac{1}{2} y} - e^{-i \pi y} e^{-i \frac{1}{2} y} \right) \right)
$$
\n
$$
\left(\frac{1}{2\pi} \cdot \left(e^{i \pi y} e^{i \frac{1}{2} y} - e^{-i \pi y} e^{-i \frac{1}{2} y} \right) \right)
$$
\n
$$
\left(\frac{1}{2\pi} \cdot \frac{1}{2} \sin(\pi x) + \left(e_{n+1} \frac{1}{2} y \right) \right) \right)
$$
\n
$$
\frac{1}{2\pi} \sin(\pi x) \text{ for } \pi \text{ is odd}
$$
\n
$$
\frac{1}{2\pi} \sin(\pi x) \text{ for } \pi \text{ is odd}
$$
\n
$$
\frac{1}{2\pi} \sin(\pi x) \text{ for } \pi \text{ is odd}
$$
\n
$$
\frac{1}{2\pi} \sin(\pi x) \text{ for } \pi \text{ is odd}
$$
\

Does
$$
g(y)
$$
 explode for $y \rightarrow 0^+$?
\n
$$
\begin{array}{c|c|c|c|c|c|c|c} \hline \sin(\frac{1}{z}y) & \Rightarrow & \frac{f(\hat{x}+y)-f(\hat{x}+)}{\sin(\frac{1}{z}y)} & \leq 4 \cdot \frac{f(\hat{x}+y)-f(\hat{x}+)}{y} \\ & & & & & & \hline \end{array}
$$

