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Fourier Transform - Part 2

Idea of Fourier series:

The function is 2-periodic: for all

per
for all

real vector space

Example: constant function

sin( )

sin(  )



Proposition:
per

given by

sin( ) sin(  ) sin(  )

cos( ) cos(  ) cos(  )

odd functions

even functions

is linearly independent.

Definition: A linear combination                ,                 is calledSpan( )

(real) trigonometric polynomial:

cos(  ) sin(  )

For                , we have a (complex) trigonometric polynomial:
per

exp(   )
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Fourier Transform - Part 3

per
In                 , we have (real) trigonometric polynomials:

cos(  ) sin(  )

Subspace:
per

Span cos( ) cos(  ) cos(  )

sin( ) sin(  ) sin(  )

basis!

Definition: For             , we define an inner product:
per

Example:

cos( ) sin( ) cos( ) sin( )

sin( )

cos(  ) sin(  ) cos(  ) sin(  )

odd function

cos(  ) cos(  ) sin(  )

sin(  )



cos(  ) cos(  ) cos(  ) cos(  )

if

Use: cos( )

Then: cos(  ) cos(  )

Use: sin( )

sin(      ) sin(      )

And similarly: sin(  ) sin(  )

Result: cos( ) cos(  ) cos(  )

sin( ) sin(  ) sin(  )

satisfies

orthogonal basis (OB)

make to orthonormal basis (ONB)
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Fourier Transform - Part 4

We already know:

cos( ) cos(  ) cos(  )

sin( ) sin(  ) sin(  )

we have an orthogonal basis (OB)

for         with  inner product
per

Normalize: sin(  ) sin(  ) sin(  )

sin(  ) sin(  ) sin(  )

cos(  )integration by parts:
cos(  )

cos(  )sin(  )

cos(  ) cos(  )

cos(  )

sin(  )

sin(  )

sin(  ) sin(  ) length 

Hence: sin(  ) has norm

Proposition: (1) cos( ) cos(  ) cos(  )

sin( ) sin(  ) sin(  )

is an ONB w.r.t. the inner product:



(2)

is an ONB w.r.t. the inner product:

cos( ) cos(  ) cos(  )

sin( ) sin(  ) sin(  )

(3)

is an ONB w.r.t. the inner product:

cos( ) cos(  ) cos(  )

sin( ) sin(  ) sin(  )

For trigonometric polynomials:

cos(  ) sin(  )

Fourier coefficients w.r.t. ONB in (3)

cos(  )

sin(  )

Approximation of periodic functions?
trigonometric polynomials
with basis:

-periodic integrable

orthogonal projection

ONB!
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Fourier Transform - Part 5

per
for all

per
Span cos( ) cos(  ) cos(  )

sin( ) sin(  ) sin(  )

inner product

Let's take integrable functions:

per per

integrable with respect to
Lebesgue measure oncomplex vector space

norm? problem:

not a norm on
per

solution: equivalence relation

set of all equivalence classes:
perper

complex vector space

norm!

identify:
per per



Let's take square-integrable functions:

per per

norm?

solution: equivalence relation

set of all equivalence classes:
perper

complex vector space with inner product
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Fourier Transform - Part 6

We know:
per per per

inner product:

Orthogonality: cos( ) cos(  ) cos(  )

sin( ) sin(  ) sin(  ) sin(  )

ONS in
per

for every

finite-dimensional subspace spanned by

write:

orthogonal projection of    onto

Fourier coefficients

minimized distance!

Definition:
cos(  ) sin(  )

with

cos(  ) cos(  )

sin(  ) sin(  )

The map                     with

is called the Fourier series of
per

can be extended to
per



Example:

cos(  ) cos(  )

sin(  ) sin(  ) cos(  )

even

odd

Fourier series: sin( ) sin(  ) sin(  )
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Fourier Transform - Part 7

per

orthogonal projection

trigonometric polynomial
(cos and sin functions)

exponential functions

Euler's formula: cos( )

sin( )

Example:
cos( ) cos(  ) sin(  )

complex linear combination!

Remember:
per

In

cos( ) cos(  ) cos(  )

sin( ) sin(  ) sin(  ) sin(  )

Span

Span

and cos(  ) sin(  )

with

for

for

for



Result: Take
per per

with inner product:

best factor for exponential functions

cos( ) cos(  ) cos(  )

sin( ) sin(  ) sin(  )

cos(  )

sin(  )

ONS:

ONS: they span the same subspace

For
per

Fourier coefficients

The map                  is called the Fourier series of
per

(with complex coefficients)
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Fourier Transform - Part 8

Fourier series:
per per

trigonometric polynomial

Geometric picture: For
per per

orthogonal projection

normal component

Question: What happens for

Proposition:
per

with inner product

and ONS given by

Then for
per

and

we have:

(a)

-norm
Pythagorean theorem:



(b)
for all (Bessel's inequality)

and

(c)

(Parseval's identity)
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Fourier Transform - Part 9

per
has ONS given by

Fourier series

Parseval's identity:

means: with

Consider two functions:
per

formula with Fourier coefficients?

with

with

We have:
Cauchy
Schwarz

Bessel's inequality



Remember the equivalent statements:
per

with ONS

(a) Parseval's identity:

(b) ONS is complete:

(c) ONS gives inner product:
informal:

(d) ONS is total: Span is dense in
per

infinitely
many from

Span

per
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Fourier Transform - Part 10

For proving Parseval's identity step functions

Most important step function: repeat
-periodically

for every

Fourier series for this example:

Visualization:

Re(  )

Im(  )



Show Parseval's identity:

cos(     ) cos(     )

cos(     )

cos(     )

General formula:

cos(   )
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Fourier Transform - Part 11

Let's prove: cos(   )

Note:
cos(   )

geometric sum formula

sin
sin

for

Lemma:
sin

for

and we have uniform convergence on interval

Proof: sin
cos(   ) cos(   )

sin
sin

sin
sin



integration by parts: sin
sin

sin

cos

cos

cos

sin
cos cos

sin

cos

sin
cos cos

sin

For choose
sin

Recall sin

Theorem: cos(   )

uniform convergence on



Proof:

sin

For (use Lemma)

uniform convergence

sin cos(   ) cos(   )

cos(   )
calculate it!

still uniform convergence on

We know more: (1) cos(   ) uniformly convergent on

by Weierstrass M-test since cos(   )

cos(   )
continuous function

(2)
continuous function

(3) cos(   )
for all

cos(   )
uniformly convergent on

Find cos(   )

uniform convergence

cos(   )
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repeat
-periodically

Parseval's identity holds for     for every possible (part 10)

Step functions: consider the complex vector space:

per per

there are

such that

adding

Do we have Parseval's identity here?

Consider step function
per



informal:

(part 9)
we have Parseval's identity
for    and

Result:
per

Parseval's identity holds for
per
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Fourier Transform - Part 13

Theorem:
per

with inner product

and ONS given by

per
define:For

Then:

  -norm

equivalent to Parseval's identity:

Fact: Continuous functions are dense in per
, which means:

For                 and
per

there is a    -periodic continuous function

with

  -norm

Proposition:
per is dense in per

step function

Proof: Let square integrable

Then there is a continuous function with

domain compact

is uniformly continuous for given there

Decompose 

length(



sup

define step function:

for

We get: for

because

In total:

constant

Theorem (see above):
per

For

Proof: Let
per

Choose
per with

Then:

Pythagorean theorem:

lim

(part 12)
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not a pointwise convergence!

We can get uniform convergence for special functions

Example: continuous and piecewise    -function

Supremum norm: sup



Theorem:             -periodic continuous function

Assume there are finitely many points

inside the interval          such that:

for all

Then:
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Theorem:             -periodic continuous function

and piecewise -function

there are finitely many points

inside the interval          such that:

for all

Then: uniformly.

Proof: Consider the derivative function:

else

piecewise continuous function

per

Parseval's identity:

What about the Fourier coefficients of

integration
by parts

General inequality for real numbers:



with

Weierstrass
  M-Test

uniformly convergent to a continuous function 

Status quo:

More estimates:

Hence:

continuous 
functions

Conclusion: (uniform convergence of the Fourier series)



The Bright Side of Mathematics - https://tbsom.de/s/ft

Fourier Transform - Part 16

parabola

continuous + piecewise -function

Example: -periodic with for

Let's calculate the Fourier coefficients:

For (integration by parts, see part 15)

integration by parts



Fourier series:

cos(  ) sin(  )

cos(  ) 

For all cos(  ) uniform convergence!

In particular for

Parseval's identity:
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-periodic

per

(in L -norm)

(pointwisely)

continuous + piecewise -function (uniformly)

?

Theorem:
per

with:

lim exists

lim exists

lim exists

lim exists

Then:

middle point



Example:

Fourier coefficients:

Fourier series:

cos(  ) sin(  ) 
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Fourier Transform - Part 18

Definition: The continuous function given by

is called the Dirichlet kernel.

part 11

cos(  )
part 11 sin

sin

zeros
for

-periodic

For Fourier series:

Properties:

(convolution)

(1)

sin

sin

has exactly zeros inside the interval



(2)

(3)

Proof of (3):
sin

sin

sin

sin
for all

sin

sin sin

|sin(y)|
sin

maximal

sin

sin const
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Theorem:
per

with:

lim exists

lim exists

lim exists

lim exists

Then:

Proof: Dirichlet kernel:
sin

sin
gives

and

symmetry!

Use symmetry:



Pointwise limit:

sin
sin

In the case that
per

, we get: sin

per
-functions

part 8
(Bessel’s inequality)

Show that 
per

sin sin

Does      explode for ?

sin
sin

limbecause

sin
and

limbecause


