• Title: Total Orthonormalsystem

  • Series: Fourier Transform

  • Chapter: Fourier Series

  • YouTube-Title: Fourier Transform 9 | Total Orthonormalsystem

  • Bright video: Watch on YouTube

  • Dark video: Watch on YouTube

  • Ad-free video: Watch Vimeo video

  • Original video for YT-Members (bright): Watch on YouTube

  • Original video for YT-Members (dark): Watch on YouTube

  • Forum: Ask a question in Mattermost

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ft09_sub_eng.srt missing

  • Download bright video: Link on Vimeo

  • Download dark video: Link on Vimeo

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Consider a vector space $V$ with an ONS $(e_i)_{i \in \mathbb{N}}$. What does it mean that the ONS is complete?

    A1: For all $x \in V$ we have: $$ \left| x - \sum_{k=1}^n e_k \langle e_k, x \rangle \right| \xrightarrow{ n \rightarrow \infty } 0 $$

    A2: For all $x \in V$ we have: $$ \left| x - \sum_{k=1}^n e_k \langle e_k, x \rangle \right| \geq n $$

    A3: For all $x \in V$ we have $\langle x, e_k \rangle = 0$ for all $k \in \mathbb{N}$.

    A4: For all $k \in \mathbb{N}$ there is a vector $x$ with $\langle x, e_k \rangle = 0$.

    Q2: Consider a vector space $V$ with an ONS $(e_i)_{i \in \mathbb{N}}$. What does it mean that the ONS is total?

    A1: The linear span of $(e_i)_{i \in \mathbb{N}}$ is dense in $V$.

    A2: The linear span of $(e_i)_{i \in \mathbb{N}}$ is equal to $V$.

    A3: The linear span of $(e_i)_{i \in \mathbb{N}}$ is of dimension $\infty$.

    A4: The linear span of $(e_i)_{i \in \mathbb{N}}$ is of finite dimension.

  • Last update: 2025-05

  • Back to overview page


Do you search for another mathematical topic?