The Bright Side of Mathematics - https://tbsom.de/s/dt

Distributions - Part 7

$$\begin{split} f \in \mathcal{L}^{1}_{loc}(\mathbb{R}^{n}) & \longleftarrow \text{ vector space of functions} \\ & \swarrow \\ T_{\underline{c}} \in \mathbb{D}^{1}(\mathbb{R}^{n}) & \longleftarrow \text{ vector space of distributions}? \end{split}$$

Fact: $\mathcal{D}^{1}(\mathbb{R}^{n})$ is a real (or complex) vector space: • addition: + for $T, S \in \mathcal{D}^{1}(\mathbb{R}^{n})$, define $T + S \in \mathcal{D}^{1}(\mathbb{R}^{n})$ $(T + S)(\Psi) = T(\Psi) + S(\Psi)$ $(T_{S} + T_{g})(\Psi) = T_{S}(\Psi) + T_{g}(\Psi)$ $= \int_{\mathbb{R}^{n}} f(x) \Psi(x) dx + \int_{\mathbb{R}^{n}} g(x) \Psi(x) dx$ $= \int_{\mathbb{R}^{n}} f(x) + g(x) \Psi(x) dx = T_{S+g}(\Psi)$ • scalar multiplication: • for $\Lambda \in \mathbb{R}$ (or \mathbb{C}), $T \in \mathcal{D}^{1}(\mathbb{R}^{n})$ define $\Lambda \cdot T$ by:

(we have all calculations rules in a vector space)

 $(\lambda \cdot T)(\varphi) = \lambda \cdot T(\varphi)$

duality pairing: $\langle T, \varphi \rangle := T(\varphi)$ $\langle \cdot, \cdot \rangle : \mathbb{J}^{1}(\mathbb{R}^{n}) \times \mathbb{J}(\mathbb{R}^{n}) \longrightarrow \mathbb{R}$ (or \mathbb{C}) bilinear map