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Distributions - part 5
Regular distributions

Proposition: linear Then

is a distribution

Proof: Let for all with

Then there is a with

and for all we have

Proof by contraposition

For take with

Define Then:

But:

Definition: is called locally integrable

if for all compact

Then we write: 

For example:

For define by

Definition: is called regular if there is a locally integrable function

such that



Distributions - part 6

Delta distribution is not regular:

There is no locally integrable function

with for all

Proof: Assume there is with for all

(measure theory/ integration theory)

(disjoint union!)

In summary: There is         with

Take test function:

contradiction



Distributions - Part 7

vector space of functions

vector space of distributions?

Fact: is a real (or complex) vector space:

addition: for , define

scalar multiplication: (or   )for

define by:

(we have all calculations rules in a vector space)

duality pairing:

(or   ) bilinear map



Distributions - Part 8

makes problems…

Multiplication with smooth functions:

can be defined as a new distribution.

First case: is a regular distribution with

should be

with

Definition: or for is the distribution defined by:

for all

Proof: (1) or is linear

(2)
Leibniz rule:

is a distribution
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linear mapinvertible

Definition: Let and be an invertible linear map.

Define:

Strange notation:

denotes the delta distribution

Or:
(with strange 
   notation)

For

define:

For

bijective, define:

Jacobian matrix of

Example: rotation

delta distribution is rotational invariant

and:



Distributions - Part 10

Motivation:

We get two regular distributions:

We have:

supp(

Definition: For a distribution , we define a new distribution

(for any multi-index , called the (distributional) partial derivative of

by:

Note: for

Example: (a) Heaviside function
(   )

supp(
supp(

distributional derivative of

(b)

distributional derivative of 
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(for any multi-index 

Therefore:
linear
continuous

Result: For distributions , we have:

Example: Laplace's equation:

euclidean/standard norm in

regular distribution: ,

Use Green's identities! 

(fundamental solution)

Definition: For a differential operator

we call a fundamental solution if



Distributions - Part 12

There is

supp

such that:

max

(compact)

Definition: is called a distribution of finite order if:

compact

supp

Regular distribution:

of order 

Theorem: is of order

complex Radon measure

bijection

For define:

Example: Dirac measure:

Corresponding distribution:

is the delta distribution



Distributions - Part 13

convolution      for integrable functions

for equivalence classes

for          define:

exists almost everywhere for

One has: with and

is an algebra over 

Generalizations:
loc

Fubini

with

For regular distributions:

Definition: For define a distribution:

convolution: bilinear map



Distributions - Part 14

convolution:

with

Hence:

seen as a regular distribution

for all

neutral element for

Properties: (a) For all multi-indices

(b)

Application: differential operator:

fundamental solution:

partial differential equation: search for

How about ?



Distributions - Part 15

Support:

supp( )

complement is the largest open set

such that

Local behaviour of a distribution? What is the value of

at a point        ?
test function

not meaningful

open set

in for all             with supp(  )

Example: in since

support of    is given by

Proposition: For there a maximal open set max with

in max

The complement is called the support of

supp(  )
max (closed set)

Proof: Define: open in

max
Question: in maxDo we have

supp(  )Take with max

supp(  )
covering

   is
compact

supp(  )

we have a finite subcover
supp(  )

supp(  )

Partition of unity:

value 1

There are test functions

with supp(  ) such that:

for all supp(  )

partition of unity

for all supp(   )
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supp(  ) closed set

supp(  )

could be used as a "test function"

Definition: For               , we define:
supp(  ) supp(  )
is compact in

Extension for      to

for

supp(  ) supp(  )

with

for all

supp(  )

supp(    ) supp(  ) supp(  )

Is it well-defined?

supp(  ) supp(  )

for all in an open set
that contains:

in an open set
that contains:

Properties: (or  satisfies:

(1) It's a linear functional on

(2) Distributional derivatives:

Common notation:  For a distribution      where            is compact insupp(  )
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Convolution from part 13:

defined by:

where

Convolution (extended):

Definition: For we define a new distribution:
Easy to show:

We get:

Proposition: For we get:

is a regular distribution

and

and supp(      ) compact

Definition: The convolution

is given by

Compatible to old definition: Choose regular distribution with

Important property: for all

for all


