-
Title: Coordinate Transformation
-
Series: Distributions
-
YouTube-Title: Distributions 9 | Coordinate Transformation
-
Bright video: https://youtu.be/Hzxo9ma8Ypo
-
Dark video: https://youtu.be/lLIzB6Q7tQg
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: dt09_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f \in \mathcal{L}^1_{loc}(\mathbb{R}^n)$ and $A$ be an invertible matrix. Is the function $x \mapsto f(Ax)$ also locally integrable?
A1: Yes!
A2: No, never!
A3: No, not necessarily. There are counterexamples.
Q2: Let $T \in \mathcal{D}^\prime(\mathbb{R}^n)$ and $A$ be an invertible matrix. What is the correct definition for the distribution $T \circ A$?
A1: $$ \langle T \circ A , \varphi \rangle = \langle T, \varphi \rangle$$
A2: $$ \langle T \circ A , \varphi \rangle = \langle T(x), \varphi(A x) \rangle$$
A3: $$ \langle T \circ A , \varphi \rangle = \left< T(x), \frac{1}{|\det(A)|}\varphi(A^{-1} x) \right>$$
A4: $$ \langle T \circ A , \varphi \rangle = \left< T(x), \frac{1}{|\det(A^{-1})|}\varphi(A x) \right>$$
Q3: Let $A$ be a matrix where $A^T A$ is the identity matrix. Which claim is correct for the delta distribution?
A1: $ \delta \circ A = \delta $
A2: $ \delta \circ A = 0 $
A3: $ \delta \circ A = \frac{1}{2} \delta $
A4: $ \delta \circ A = -\delta$