-
Title: Space of Distributions
-
Series: Distributions
-
YouTube-Title: Distributions 4 | Space of Distributions
-
Bright video: https://youtu.be/0QrNkB09hYE
-
Dark video: https://youtu.be/_JUKvtPTz00
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: dt04_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $T: \mathcal{D}(\mathbb{R}^n) \rightarrow \mathbb{R}$ be a linear map. What is in general not correct?
A1: $T(\varphi_1 + \varphi_2) = T(\varphi_1) + T(\varphi_2) $
A2: $T(\lambda \varphi_1 + \varphi_2) = \lambda T(\varphi_1) + T(\varphi_2) $
A3: $T(\varphi_1 + \lambda \varphi_2) = T(\varphi_1) + \lambda T(\varphi_2) $
A4: $T(\varphi_1 + \lambda \varphi_2) = \lambda T(\varphi_1) + \lambda T(\varphi_2) $
Q2: Which two properties define a distribution $T: \mathcal{D}(\mathbb{R}^n) \rightarrow \mathbb{R}$?
A1: It is linear and sequentially continuous.
A2: It is linear and positive.
A3: It is continuous and homogenous.
A4: It is continuous and sequentially continuous.
Q3: What is the notation we use for the set of distributions?
A1: $ \mathcal{D}(\mathbb{R}^n) $
A2: $ \mathcal{D}(\mathbb{R}^n)^\prime $
A3: $ \mathcal{D}(\mathbb{R}^n)^\ast $
A4: $ \mathcal{D}(\mathbb{R}^n)_0 $
Q4: What is the correct definition for the delta distribution?
A1: $ \delta(\varphi) = \varphi(1) $
A2: $ \delta(\varphi) = \varphi^\prime(1) $
A3: $ \delta(\varphi) = \varphi(0) $
A4: $ \delta(\varphi) = \varphi(0) + \varphi(1) $