Solving equations with complex numbers

Solve $z^{3}=\sqrt{8} \cdot e^{i \frac{\pi}{4}}$
$\Rightarrow \quad z^{3}=\sqrt{8} \cdot e^{i\left(\frac{\pi}{4}+2 \pi \cdot k\right)} \quad, k=0,1,2, \ldots$
$\Rightarrow \quad z_{k}=(\sqrt{8})^{1 / 3} e^{i\left(\frac{\pi}{4}+2 \pi k\right) \cdot \frac{1}{3}}$
$\Rightarrow z_{k}=8^{1 / 6} e^{i\left(\frac{\pi}{12}+\frac{2}{3} \pi \cdot k\right)}$
$k=0,1,2$
$\Rightarrow z_{0}=\sqrt{2} e^{i \frac{\pi}{12}}$
$z_{1}=\sqrt{2} e^{i \frac{g}{12} \pi}$
$z_{2}=\sqrt{2} e^{i \frac{17}{12} \pi}$

$z^{4}=3+2 i$

