Complex Analysis - Part 30

 $f: \mathbb{C} \longrightarrow \mathbb{C}$ holomorphic

with known values $\left\{ \left(z, f(z) \right) \mid z \in \partial B_r(z_0) \right\}$

 $g: \mathbb{C} \longrightarrow \mathbb{C}$ holomorphic with same values on $\partial \mathbb{B}_r(2)$

Cauchy's integral formula

$$\longrightarrow \qquad f = g \quad \text{on} \quad \mathcal{B}_r(z_0)$$

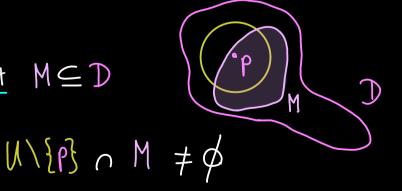
Identity theorem: $f,g: \mathcal{I} \longrightarrow \mathbb{C}$ holomorphic, $\mathcal{D} \subseteq \mathbb{C}$ open domain (connected).

Then: $\left\{ z \in \mathcal{D} \mid f(z) = g(z) \right\}$ has an accumulation point in \mathcal{D}

There is $c \in \mathcal{D}$ with $\int_{-\infty}^{(n)} (c) = g^{(n)}(c)$ for all h = 0,1,2,...

What is an accumulation point?

 $p \in \mathbb{D}$ is called an accumulation point of the set $M \subseteq \mathbb{D}$



$$M = N$$

$$M = N$$
 • • • • • • • • • • no accumulation point

$$M = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$$
 • • • O is accumulation point

h:=f-g holomorphic. Show the equivalence of: Proof idea:

(1)
$$M = \{ \xi \in \mathcal{D} \mid h(\xi) = 0 \}$$
 has an accumulation point in \mathcal{D}

$$(2) h = 0$$

(3) There is
$$c \in \mathbb{D}$$
 with $h^{(n)}(c) = 0$ for all $h = 0,1,2,...$

$$(1) \Longrightarrow (3)$$
 (Contraposition: $\neg (3) \Longrightarrow \neg (1)$)

For each
$$C \in \mathbb{D}$$
 there is a minimal m with $h^{(m)}(c) \neq 0$

and
$$h(z) = \sum_{k=m}^{\infty} \frac{h^{(k)}(c)}{k!} (z-c)^k = a_m \cdot (z-c)^m + \cdots$$

$$\Rightarrow h(z) \neq 0$$
 for $z \in \mathbb{N} \{c\}$

$$\Rightarrow U \{c\} \cap M = \emptyset$$

$$(3) \Rightarrow (2)$$

$$A_{k} := \left\{ 2 \in \mathbb{D} \mid h^{(k)}(2) = 0 \right\} \quad \text{closed} \quad \Longrightarrow \quad A := \bigcap_{k=0}^{\infty} A_{k} \quad \text{closed}$$

$$A := \bigcap_{k=0}^{\infty} A_k \text{ closed}$$

$$\supset$$
 connected

$$\Rightarrow A = \mathcal{D} \Rightarrow h = 0$$