ON STEADY

The Bright Side of Mathematics

Complex Analysis - Part 15

Laurent series (generalisation of power series + holomorphic)

$$\sum_{k=0}^{\infty} a_k \cdot \left(\frac{1}{W}\right)^k \text{ is convergent} \begin{cases} \left|\frac{1}{W}\right| < \Gamma \\ \Leftrightarrow \\ |w| > \frac{1}{\Gamma} \end{cases}$$

$$\longrightarrow \qquad \qquad \bigvee \longmapsto \sum_{k=0}^{\infty} a_k \cdot \bigvee^{-k} \text{ is holomorphic on } \left(\bigcup \overline{\mathcal{B}}_{\frac{1}{r}}(0) \right)$$

(alternatively: constant +
$$\sum_{k=-1}^{-\infty} b_k \cdot 2^k$$
)

Combine two series:

$$2 \mapsto \sum_{k=0}^{\infty} a_k \cdot 2^k \longrightarrow$$
 with radius of convergence Γ_1

$$\frac{1}{2} \mapsto \sum_{k=-1}^{-\infty} b_k \cdot 2^k \xrightarrow{\sum_{k=1}^{\infty}} b_{-k} \cdot 2^k \longrightarrow \text{ with radius of convergence} \qquad \Gamma_2 = \frac{1}{\Gamma}$$
with "radius of convergence" $\Gamma_2 = \frac{1}{\Gamma}$

A Laurent series written as $\sum_{k=-\infty}^{\infty} a_k \cdot (z-z_0)$ is a pair of two series: Definition:

$$z \mapsto \sum_{k=0}^{\infty} a_k \cdot (z-z_k)$$
 with radius of convergence $z \in [0, \infty]$

principal part

⇒
$$z \mapsto \sum_{k=-1}^{-\infty} a_k \cdot (z-z_0)^k$$
 with "radius of convergence" $z \in [0, \infty]$

a_1 is called the <u>residue</u> of the Laurent series.

The Laurent series is a holomorphic function on $\{z \in \mathbb{C} \mid \zeta < |z-z_o| < \zeta \}$