Complex Analysis — Part 32

Residue ~> Residue Theorem

Short recapitulation: Closed curve integrals:

5-. D — € nolomorphic.
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Combine (1) and (3) for Laurent series:
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Res(g Z ) residue

Ty
Fact: Let § be a Laurent series defined on @\ with m<r<r, .

2,

Then: Ees(g,zh =a, =

() de
9B,

Definition:  Let §-. D —> € ve holomorphic and 2, be an isolated singularity of §.
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1f ZBE(%O\{%A < D, then we define: :D

Res(§,2,):= §} 2) At
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residue of §{ at g




