BECOME A MEMBER

ON STEADY

The Bright Side of Mathematics

Power series

Example: Exponential function:
$$exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

Definition: For a sequence of complex numbers
$$a_0$$
, a_1 , a_2 , a_3 ,...,
the function $f: \mathbb{D} \longrightarrow \mathbb{C}$, $z \mapsto \sum_{k=0}^{\infty} a_k (z-z_0)^k$ expansion point
with $\mathbb{D} := \left\{ z \in \mathbb{C} \mid \sum_{k=0}^{\infty} a_k (z-z_0)^k \text{ is convergent} \right\}$

is called a power series.

Fact: For
$$\sum_{k=0}^{\infty} a_k(z-z_0)^k$$
, there is a maximal $\Gamma \in [0,\infty) \cup \{\infty\}$
such that $\{B_r(z_0) \subseteq D$ for $\Gamma \in [0,\infty)$
 $(\Gamma = D)$ for $\Gamma = \infty$

and for
$$2 \in \mathbb{C} \setminus \overline{B_r(z_o)}$$
 the power series is divergent.

Cauchy-Hadamard:
$$\frac{1}{\Gamma} = \lim_{k \to \infty} \sup_{k \to \infty} \left| a_{k} \right| \in [0, \infty) \cup \left\{ \infty \right\} \quad \left(\begin{array}{c} \frac{1}{0} = \infty \\ \frac{1}{\infty} = 0 \end{array} \right)$$

 Γ is called the radius of convergence.