ON STEADY

The Bright Side of Mathematics

Complex Analysis - Part 4

(regular/ (complex) analytic/ ...)

<u>Definition:</u> $\mathcal{U} \subseteq \mathbb{C}$ open. $f: \mathcal{U} \longrightarrow \mathbb{C}$ is called <u>holomorphic</u> (on \mathcal{U}) U if f is (complex) differentiable at every $z_0 \in \mathcal{V}$. If $\mathcal{V} = \mathbb{C}$, the holomorphic function is called <u>entire</u>. Properties: (a) f is holomorphic \Longrightarrow f is continuous (b) $f_{ig}: \mathcal{V} \longrightarrow \mathbb{C}$ holomorphic $\Longrightarrow f + g$, $f \cdot g$ holomorphic

(c) Sum rule, product rule, quotient rule and chain rule for derivatives hold.

Examples: (1)
$$f: \mathbb{C} \longrightarrow \mathbb{C}$$
, $f(2) = a_m \cdot 2^m + a_{m-i} \cdot 2^{m-1} + \cdots + a_i \cdot 2^i + a_0$
A polynomial is an entire function. with $a_{0, \cdots}, a_m \in \mathbb{C}$
 $f'(2) = m \cdot a_m \cdot 2^{m-1} + (m-1) \cdot a_{m-i} \cdot 2^{m-2} + \cdots + 2 \cdot a_2 \cdot 2^i + a_1$
(2) $f: \mathbb{C} \setminus \{0\} \longrightarrow \mathbb{C}$, $f(2) = \frac{1}{2}$ is holomorphic
(3) $f: \mathbb{C} \setminus \{0\} \longrightarrow \mathbb{C}$, $f(2) = \frac{p(2)}{q(2)}$ is holomorphic
 $f(2) = 0$ polynomial $polynomial$