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Complex Analysis - Part 1

analysis of differentiable functions

instead of 

helpful for real problems like

We need: sets

complex numbers
Start Learning Mathematics

basic knowledge of continuous and differentiable functions

basic knowledge of power series
Real Analysis
(some videos)

Some definitions:
is a set with a distance (metric space)

distance:

absolute value in

A sequence is convergent to

is convergent to

-ball:

A function               is continuous at          if for all sequences

implies

means:        is convergent to
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differentiable at   ?

domain can be any open set

Definition: is called open if

Definition: open is called

(complex) differentiable at if

exists.

For all sequences                    with

the sequence converges (to the same number).
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open

is (complex) differentiable at

exists.

there is a function: with

for all

and           is continuous at

Definition: is called

the (complex) derivative of    at  

Examples:
(a)

for

(b)

differentiable at         ?

does not exist!

is not differentiable at 
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Definition: open is called holomorphic

if is (complex) differentiable at every

(on   )

(regular/ (complex) analytic/...)

If the holomorphic function is called entire.

Properties: (a) is holomorphic is continuous

(b) holomorphic holomorphic

(c) Sum rule, product rule, quotient rule and chain rule for derivatives hold.

Examples: (1)

withA polynomial is an entire function.

(2) is holomorphic

(3)

polynomial

polynomial

is holomorphic
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complex plane vector space

is             a multiplicationwith

Remember: Each map induces a map (and vice versa)

Example:

Definition: A map                    is called (totally) differentiable at

if there is a matrix              and a map                   with:

linear approximation
where

(Euclidean)
norm

is called the Jacobian matrix of     at

Example:

(evaluate at 
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(1) is (complex) differentiable at         if

there is               and a function                with:

where

(2)
                   is called (totally) differentiable at             if

   there is a matrix              and a map                   with:

where

Question: In which cases does a matrix-vector multiplication 
represent a multiplication of complex numbers?

Let's check:

Theorem: is (complex) differentiable at

                   is (totally) differentiable at

and the Jacobian matrix at      has the form:

For

two maps:

the Cauchy-Riemann equations are satisfied:

and
at point
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Theorem: open

is holomorphic

Real part of    as a function on

and imaginary part of    as a function on

fulfil:
and at all points

Examples: (a)

is holomorphic

(b)

is not holomorphic

(c)

is holomorphic
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holomorphic

Wirtinger derivatives

? ?

for

and map 

Definition:

Example:

Fact: holomorphic at all points in

In this case:
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Power series

Example: Exponential function:

Definition: For a sequence of complex numbers

the function expansion point

with is convergent

is called a power series.

Example: Geometric series: for

divergent for

Fact: there is a maximalFor

such that for

for

convergence

divergence

and for the power series is divergent.

Cauchy-Hadamard:

is called the radius of convergence.
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Definition: A sequence of functions

is uniformly convergent to 

if

Result for power series: Let

be a power series with radius of convergence

Then: (1) is uniformly convergent on with

sequence of functions                                                    is uniformly convergent

(2) is uniformly convergent on with

sequence of functions                                                    is uniformly convergent

(3) is complex differentiable with
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Result for power series: Let

be a power series with radius of convergence

Then: (1) is uniformly convergent on with

(2) is uniformly convergent on with

(3) is complex differentiable with

Proof: Assume

(1)

supremum norm
on

-inequality

convergent for

Hence there is with

(2)
radius of convergence for

same proof as in (1)

(3)

For Geometric sum formula:

Choose:
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holomorphic on its open disc of convergence

exists and is a power series

exists and is a power series

Examples: (1)
(radius of convergence:

(2)

connection?
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logarithm       = inverse function of

In

In

radius:

define: smallest positive zero
of

We get:

Euler's formula

(use derivative/monotonicity)

and

Periodicity: for all

not injective

radius

bijective!

Definition: stripe is called the principal value
of the logarithm function.

Properties:

jump
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4 times

Power definition in 

Power definition in 

for example:

for complex base?

principal value of the logarithm

principal value of the power

be careful in calculations:

in general
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Laurent series (generalisation of power series + holomorphic)

with radius of convergence

is convergent

chain rule

is holomorphic on

alternatively: constant

Combine two series: with radius of convergence

with radius of convergence

with "radius of convergence"

Definition: A Laurent series written as is a pair of two series:

with radius of convergence

with "radius of convergence"
principal part

is called the residue of the Laurent series.

The Laurent series is a holomorphic function on
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Laurent series: with domain

If the principal part is finite: pole at

Definition: Let be given by a Laurent series

If there is such that for all

and then we say has a pole of order     at

Example: (a) Laurent series

has a pole of order     at

(b) has a pole of order     at

Definition: Let be holomorphic and

If there is with

then      is called an isolated singularity of

not isolated

Example:
is holomorphic with domain

isolated singularities

Proposition: At isolated singularities, we always find a Laurent series locally:

proof later

uniquely given

Three cases for isolated singularities:

(2)

(1)

(3)

pole: and

removable singularity:

essential singularity:

Examples: (1) removable
singularity

(2)
pole of order 1

(3)
essential singularity



Complex Analysis - Part 17

Complex integration:

curve integral, line integral, contour integral

Complex integration on real intervals:

continuous

For a continuous map , we define:

ordinary Riemann integrals in

Important property: Let be continuous. Then:

Example: continuous

Proof: Assume Define: Then:

We know:

of
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continuous

First look at

Definition: For a parametrized curve continuously differentiable

with we define:

for continuous functions with

Examples: (a)

(b)

(c)

Another visualisation: "weighted curve"

(in some sense)
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continuously differentiable

We can extend this: piecewise continuously differentiable

there are

such that is continuously differentiable

define:

If then is called a closed curve and we write:

Important example:

Properties: continuous, piecewise continuously differentiable

(a)
for all

(b) If is with reverse orientation,

then

(c)
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Definition: open

is called a primitive/antiderivative of

if
complex derivative!

Fact: If has an antiderivative , then:

parametrized curve

Proof:
chain rule

fundamental theorem
    of calculus

Corollary: If has an antiderivative and      is closed, then:

Example: (a) antiderivative:

(b)

We know: with 

no antiderivative for on

(c)
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Fact: has an antiderivative

for all closed curves?
Theorem: holomorphic

domain/region: open + path-connectedopen

for any two points 

there is a curve                with            and

not allowed:

If for all closed curves then has an antiderivative.

Proof: For define:

closed curve:

well-defined!

Show:

line connecting   with

length
Ran(  )
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Goursat's theorem: holomorphic

closed curve wher the image is a triangle

and the inner part lies in

not allowed

Then:

e

Proof:
Basic idea:

Decompose triangle:

represents maximal value

Repeat   times:

converge
to a point

lies in the
interior of
all

Complex  differentiability at   :

where

has antiderivative with

Ran(   )   
length(     )

Ran(   )   
length(     )

Ran(   )   

length length length

Ran(   )   
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holomorphic

not allowed

Cauchy's theorem (for a disc):

holomorphic where (open disc)

closed curve

Proof: Show that an antiderivative exists!

(everything lies in    )

Goursat

length
Ran(  )

has an antiderivative on for each closed
curve     in
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Winding number for curves
piecewise continuously differentiable

one turn around

angle

two turns around

two turns around

one turn around

Special integral: for

for

for with image in a disk
where disk

for

Definition: The winding number of a curve around Ran(  )

is defined by:

wind(  ,  )

Fact: closed wind(  ,  )

Proof: Assume closed

Write   as:

piecewise continuously differentiable

closed

wind(  ,  )
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winding number: wind(  ,  )

wind

wind

Definition: For closed

Ext(  ) Ran wind(  ,  )

Int(  ) Ran wind(  ,  )

Extending Cauchy's theorem:

holomorphic closed RanInt(  )

disc
part 23

rectangle
part 23

same proof

proof needed: Goursat

works also:

Cauchy's theorem (general version):

holomorphic closed RanInt(  )

Cauchy's theorem (for some domains):

closed curveholomorphic

If
convex or

or

star domains

Appendix:

Proof from part 23 can be transformed to a proof for domain

Just fix point    here:

Then for every  , define the path    in the following way:

So it's a well-defined polygon path:

Goursat

Hence, we have if and are close enough.

So for , we also get:

has an antiderivative on for each closed
curve     in

length
Ran(  )
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Cauchy's theorem applicable

keyhole contour

Assume: holomorphic

Cauchy's theorem

Split it up:

What happens for 

max length(  )

(3)

(2)(4)
Cauchy's theorem

In summary: For 

Result: same integral value
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Cauchy's integral formula

Theorem: holomorphic

closed curve given by

the circle on wind(  ,  )

Then:

for all

Proof: holomorphic

with

last video

keyhole 
contour

for all
and small enough
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Fact: holomorphic. Then:

(a) exists for all

(b)

for all

(c) In is a power series:

for

Proof:

Cauchy's
integral
formula

geometric series

uniform convergence

for
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Cauchy's inequalities: holomorphic

Then: sup

Proof:

parametrized curve:

sup

sup

Application: holomorphic and bounded sup

for all

for all

is constant

(Liouville's theorem)

sin
not bounded
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holomorphic

with known values

holomorphic with same values on

on
Cauchy's integral formula

Identity theorem: holomorphic open domain (connected)

Then: has an accumulation point in

There is with for all

What is an accumulation point?

is called an accumulation point of the set

if for all open set     with   :

no accumulation point

is accumulation point

Proof idea: holomorphic. Show the equivalence of:

(1)

(2)

(3)

has an accumulation point in

There is with for all

(1) (3) (1)(3)Contraposition:

For each there is a minimal with

and

for

(3) (2)
closed closed

(3)

is also open:

connected

(2) (1)
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Identity theorem:

holomorphic

open domain (connected)

has an accumulation point in

Example: cos given by cos

Consider a holomorphic function with

and with
cos

identity theorem

for every

cos has a unique extension for     as a holomorphic function.

General formulation: open domain (connected)and

with 

there is at most one holomorphic function

with
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Residue Residue Theorem

Short recapitulation: Closed curve integrals:

holomorphic.

(1) antiderivative of

(2) star domain or

(3) wind(  ,  )

Combine (1) and (3) for Laurent series:

wind(  ,  )

Res residue

Fact: Let be a Laurent series defined on with

Then: Res

Definition: be holomorphic andLet be an isolated singularity of

If then we define:

Res

residue of    at  
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Residue: Res

Example: holomorphic

ResRes

Proposition: holomorphic isolated singularity

If is bounded, then Res

Proof:

Res

Residue for poles

holomorphic isolated singularity

pole the function with

is holomorphic

Example:

holomorphicpole

Fact: has a pole at

There is a unique and non-vanishing holomorphic function

such that

There is a unique and a holomorphic function

for

for

(of order

Theorem: holomorphic isolated singularity

If is a pole of order then:

Res

Example: is a pole order

Res

th complex derivative
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holomorphic

Res

isolated singularity

Res

circle around

Reswind(  ,  )

Residue theorem: open domain,
connected

holomorphic

isolated singularities of  , closed curve

with

not allowed:

Int(  )

Then: Reswind(  ,  )

Proof: open disc

Cauchy's theorem
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where

complex contour integral:
where

residue theorem:
Res

where max length(  )
Ran( )

Hence:

Res
Im( )

poles:

formula for simple poles: Res


