The Bright Side of Mathematics

The following pages cover the whole Complex Analysis course of the Bright Side of Mathematics. Please note that the creator lives from generous supporters and would be very happy about a donation. See more here: [https://tbsom.de/support](https://thebrightsideofmathematics.com/support)

Have fun learning mathematics!

1

 \iff ($|z_{n} - \alpha|$)_{nE.IN} $\subseteq \mathbb{R}$ is convergent to 0

-ball: A function is continuous at if for all sequences implies means: is convergent to

 \mathbf{f}

$$
\text{Definition:} \quad \int_{\zeta(z_0)}^1 (z_0) := \Delta_{\zeta, z_0}(z_0) = \lim_{z \to z_0} \frac{\int_{\zeta(z_0)}^1 (z_0) - \int_{\zeta(z_0)}^1 (z_0)}{z - z_0}
$$
 is called

the (complex) derivative of f at z_o .

Examples: (a)

a)
$$
f: \mathbb{C} \to \mathbb{C}
$$
, $f(z) = m \cdot z + c$ for $m, c \in \mathbb{C}$
 $f(z) = (m \cdot z_0 + c) + (z - z_0) \cdot m$

The Bright Side of Mathematics

Complex Analysis - Part 4

(regular/ (complex) analytic/...)

 D etinition: $M \subseteq U$ open , $\uparrow : U \longrightarrow U$ is called <u>holomorphic</u> (on U) $\mathsf N$ if \int is (complex) differentiable at every $z_0 \in U$. If $U = \mathbb{C}$, the holomorphic function is called entire.

Properties: (a) is holomorphic is continuous (b) holomorphic holomorphic (c) Sum rule, product rule, quotient rule and chain rule for derivatives hold.

Examples:	(1) $\int : \mathbb{C} \longrightarrow \mathbb{C}$	$\int (z) = a_m \cdot z^m + a_{m-i} \cdot z^{m-1} + \cdots + a_1 \cdot z^1 + a_0$
A polynomial is an entire function.	with $a_{0,1} \dots, a_m \in \mathbb{C}$	
$\int^1(z) = m \cdot a_m \cdot z^{m-1} + (m-1) \cdot a_{m-i} \cdot z^{m-2} + \cdots + 2 \cdot a_2 \cdot z^1 + a_1$		
(2) $\int : \mathbb{C} \setminus \{0\} \longrightarrow \mathbb{C}$	$\int (z) = \frac{1}{z}$ is holomorphic	
(3) $\int : \mathbb{C} \setminus \bigcup_{n=1}^{\infty} \longrightarrow \mathbb{C}$	$\int (z) = \frac{\mathbb{P}(z)}{q(z)}$ is holomorphic	

linear approximation

\n
$$
\frac{\psi(x)}{\sqrt{(x-x_0^3+(y-y_0^3)} = \frac{\psi(x_0)}{\text{norm}} \cdot \frac{\psi(x_0)}{\sqrt{(x_0^3)} + \frac{\psi(x_0)}{\sqrt{(x_0^3)}}}{\sqrt{(x_0^3)} + \frac{\psi(x_0)}{\sqrt{(x_0^3)}}}
$$
\n0 is called the Jacobian matrix of f_x at $(x_0^3) \in \mathbb{R}^2$.

\n
$$
y = \begin{pmatrix} \frac{1}{2x} & \frac{1}{2x} \\ \frac{1}{2x} & \frac{1}{2x} \\ 1 & 1 \end{pmatrix}
$$
\n(evaluate at (x_0^3))

\n
$$
f_x : \mathbb{R}^2 \to \mathbb{R}^2
$$
\n
$$
\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x^2 - y^2 \\ z \end{pmatrix}
$$
\n
$$
y = \begin{pmatrix} 2 \cdot x & -2 \cdot y \\ 2 \cdot y & 2 \cdot x \end{pmatrix}
$$

Example:

The Bright Side of Mathematics

Complex Analysis - Part 6

(1)
$$
\int : \mathbb{C} \longrightarrow \mathbb{C}
$$
 is (complex) differentiable at $z_0 \in \mathbb{C}$ if
\nthere is $\int^1 (z_0) \in \mathbb{C}$ and a function $\varphi : \mathbb{C} \longrightarrow \mathbb{C}$ with:
\n $\int (z) = \int (z_0) + \int^1 (z_0) \cdot (z - z_0) + \varphi(z) \quad \text{where} \quad \frac{\varphi(z)}{z - z_0} \xrightarrow{z \to z_0} 0$

$$
\begin{array}{lll}\n\text{(2)} & \int_{R} : \mathbb{R}^{C} \longrightarrow \mathbb{R}^{C} & \text{is called (totally) differentiable at } & \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} \in \mathbb{R}^{C} & \text{if} \\
\text{there is a matrix} & \int \in \mathbb{R}^{2 \times 2} & \text{and a map} & \varphi : \mathbb{R}^{C} \longrightarrow \mathbb{R}^{C} & \text{with:} \\
\int_{R} \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) & = & \int_{R} \left(\begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} \right) + & \int \left(\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} \right) & + & \varphi \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) & \text{where } & \frac{\varphi \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) - \left(\begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} \right)}{\left\| \begin{pmatrix} x \\ y \end{pmatrix} - \left(\begin{pmatrix} x_{0} \\ y \end{pmatrix} \right)\right|} & \text{where} \\
\end{array}
$$

Question: In which cases does a matrix-vector multiplication represent a multiplication of complex numbers?

<u>Let's check:</u>
 $w \cdot Z = (a \cdot x - b \gamma) + i \cdot (bx + ay)$
 $(a + ib) (x + iy)$

$$
\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \cdot x - b \gamma \\ b x + a \gamma \end{pmatrix}
$$

Theorem: $\int : \mathbb{C} \longrightarrow \mathbb{C}$ is (complex) differentiable at $z_0 = x_0 + iy_0 \in \mathbb{C}$

$$
\iff \quad \int_{R} : \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \quad \text{is (totally) differentiable at } \quad \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} \in \mathbb{R}^{2}
$$
\nand the Jacobian matrix at $\begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix}$ has the form: $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$
\n
$$
\iff \quad \text{for} \quad \int_{R} \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} u(x_{1}y) \\ v(x_{1}y) \end{pmatrix} \text{ the Cauchy-Riemann equations are satisfied:}
$$
\n
$$
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{and} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \quad \text{at point } (x_{0}y_{0})
$$

The Bright Side of Mathematics

Complex Analysis - Part 7 ู้ U
| U_R $Theorem: $W \subseteq \mathbb{C}$ open.$ </u> $\int : \mathsf{U} \longrightarrow \mathsf{C}$ is holomorphic \iff Real part of f as a function on $U_R \subseteq R^2$ $u: U_R \longrightarrow \mathbb{R}$ and imaginary part of f as a function on $U_R \subseteq R^2$ $v: U_R \longrightarrow \mathbb{R}$

fullfill:
$$
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}
$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ at all points
(x,y) \in \bigvee \bigvee \bigvee

Examples: (a) $f: \mathbb{C} \to \mathbb{C}$ $f(z) = z \implies f(x+iy) = x + i y$ $u(x,y)$ $v(x,y)$ $\Omega_{\rm u}$ Ω_{11}

$$
\frac{\partial u}{\partial x} = 1 \qquad \frac{\partial u}{\partial y} = 0
$$

$$
\frac{\partial v}{\partial y} = 1 \qquad -\frac{\partial v}{\partial x} = 0 \qquad \Rightarrow \qquad \oint \text{ is holomorphic}
$$

(b)
$$
f: \mathbb{C} \to \mathbb{C}
$$
, $f(z) = \overline{z} \implies f(x+iy) = \underset{u(x,y)}{x} + i(\underset{v(x,y)}{y})$
 $\frac{\partial u}{\partial x} = 1$
 $\implies f$ is not holomorphic

$$
\frac{\partial v}{\partial y} = -1
$$

(c)
$$
f: \mathbb{C} \to \mathbb{C}
$$
 , $f(z) = z^2 + iz \implies f(x+iy) = (x+iy)^2 + iz(xy)$
\n
$$
\frac{\partial u}{\partial x} = 2x \qquad \frac{\partial u}{\partial y} = -2y - 1 \qquad = (x^2 - y^2 - y) + iz(2xy + x)
$$
\n
$$
\frac{\partial v}{\partial y} = 2x \qquad -\frac{\partial v}{\partial x} = -(2y+1)
$$
\n
$$
\implies f \text{ is holomorphic}
$$

Complex Analysis - Part 8 $\int f: U \longrightarrow \mathbb{C}$ holomorphic **Wirtinger derivatives ? ?** $f'(x+iy) = a + ib$
 $\frac{\partial u}{\partial x}(x,y)$ for $f_R((x)) = (u(x,y))$ $\frac{\partial u}{\partial x}(x,y)$ $\frac{\partial v}{\partial x}(x,y)$
 $= \frac{1}{2} \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} + \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right)$
 $= \frac{1}{2} \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} + \frac{\partial u}{\partial x} \right)$
 $u(x,y) + i v(x)$ $u(x,y) + i v(x,y)$ = $\frac{1}{2} \left(\frac{\partial}{\partial x} (u + iv) - i \frac{\partial}{\partial y} (u + iv) \right)$
 $\frac{\partial f}{\partial x}$

Definition:

$$
\frac{\partial}{\partial z} := \frac{1}{2} \cdot \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \qquad , \qquad \frac{\partial}{\partial \overline{z}} := \frac{1}{2} \cdot \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)
$$

gt

Example:
$$
f(z) = z^L = (x + iy)^2 = x^2 - y^2 + i \cdot 2 \cdot xy \implies \frac{\partial f}{\partial x} = 2 \cdot x + i2y = 2 \cdot z
$$

\n
$$
\frac{\partial f}{\partial y} = -2y + i2x = 2 \cdot iz
$$
\n
$$
\frac{\partial f}{\partial z} = \frac{1}{2} (2z + i \cdot 2iz) = 0 \implies \frac{\partial f}{\partial z} = \frac{1}{2} (2z - i \cdot 2iz) = 2 \cdot z
$$
\nEach: $f: U \to \mathbb{C}$ holomorphic $\iff \frac{\partial f}{\partial \overline{z}} = 0$ at all points in U

ON STEADY

The Bright Side of Mathematics

Complex Analysis - Part 9

Power series

Example: Exponential function:
$$
exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}
$$

Definition: For a sequence of complex numbers
$$
a_0
$$
, a_1 , a_2 , a_3 , ...)

\nthe function \int : \int \Rightarrow \mathbb{C} , $z \mapsto \sum_{k=0}^{\infty} a_k (z - z_o)^k$ expansion point with $\mathbb{D} := \left\{ z \in \mathbb{C} \mid \sum_{k=0}^{\infty} a_k (z - z_o)^k \text{ is convergent} \right\}$

is called a power series.

Example: Geometric series:
$$
\sum_{k=0}^{\infty} z^{k} = \frac{1}{1-z}
$$
 for $|z| < 1$
\n
$$
\bigcup = B_{1}(0) \qquad \bigwedge_{\text{divergent for }} |z| \ge 1
$$

Fact: For
$$
\sum_{k=0}^{\infty} a_k (z-z_i)^k
$$
, there is a maximal $r \in [0, \infty)$ ω { ω }
such that $\{B_r(z_i) \subseteq D \text{ for } r \in [0, \infty)$
 $\left(\begin{array}{cc} \begin{array}{ccc} \begin{array}{ccc} \begin{array}{ccc} \end{array} \\ \end{array} \end{array}$

and for
$$
2\in\mathbb{C}\setminus\overline{\mathcal{B}_{r}(z_{0})}
$$
 the power series is divergent.

$$
\frac{\text{Cauchy-Hadamard:}}{\Gamma} = \limsup_{k \to \infty} \sqrt[k]{|a_k|} \in [0, \infty) \cup \{\infty\} \quad \left(\frac{1}{\infty} = \infty\right)
$$

is called the radius of convergence.

ON STEADY

The Bright Side of Mathematics

Complex Analysis - Part 10

Definition:

\nA sequence of functions

\n
$$
\int_{h} : \mathbf{U} \to \mathbb{C} \quad (\text{ } n \in \mathbb{N})
$$
\nis uniformly convergent to

\n
$$
\int_{\mathbf{F}} \mathbf{U} \to \mathbb{C}
$$
\nif

\n
$$
\left| \int_{\mathbf{F}} - \int_{\mathbf{E}} \mathbf{U} \cdot \
$$

sequence of functions
$$
f_n
$$
: $\overline{\mathcal{B}_c(z_0)} \to \mathbb{C}$, $f_n(z) = \sum_{k=0}^{n} a_k (z - z_0)^k$ is uniformly convergent

(2)
$$
\sum_{k=1}^{\infty} a_k \cdot k(z - z_o)^{k-1}
$$
 is uniformly convergent on $\overline{B_c(z_o)}$ with $c < r$
\n $\left(\text{sequence of functions } \int_n^1 : \overline{B_c(z_o)} \to \mathbb{C} \right), \int_n^1(z) = \sum_{k=0}^n a_k \cdot k(z - z_o)^{k-1}$ is uniformly convergent
\n(3) \int is complex differentiable with $\int_0^1(z) = \sum_{k=1}^{\infty} a_k \cdot k(z - z_o)^{k-1}$

The Bright Side of
Mathematics

Construct for power series:	Let $f: \mathcal{F}(\lambda, \lambda) \to \mathbb{C}$, $f(\lambda) = \sum_{k=0}^{\infty} a_k \cdot (2-\lambda)$	
Then:	(c)	$\sum_{k=0}^{\infty} a_k \cdot (2-\lambda)^k$ is uniformly convergent on $\mathcal{B}_c(\lambda)$ with $c < r$
Then:	(d)	$\sum_{k=0}^{\infty} a_k \cdot (2-\lambda)^k$ is uniformly convergent on $\mathcal{B}_c(\lambda)$ with $c < r$
Proof:	λ assume $\lambda_0 = 0$. $\int \mu$; $\mathcal{B}_c(\lambda) = \sum_{k=0}^{\infty} a_k \cdot k \cdot (2-\lambda)^{k-1}$	
Proof:	λ assume $\lambda_0 = 0$. $\int \mu$; $\mathcal{B}_c(\lambda) = \sum_{k=0}^{\infty} a_k \cdot k \cdot (2-\lambda)^{k-1}$	
Proof:	λ assume $\lambda_0 = 0$. $\int \mu$; $\mathcal{B}_c(\lambda) = \sum_{k=0}^{\infty} a_k \cdot k \cdot (2-\lambda)^{k-1}$	
Proof:	λ is λ , and λ , λ , λ , and λ , λ , and λ	

The Bright Side of Mathematics

Complex Analysis - Part 12

$$
\sum_{m=0}^{\infty} \cos(2) = \frac{1}{2} \left(P \times p(i \cdot z) + P \times p(-i \cdot z) \right)
$$

$$
\Rightarrow \cos(\epsilon) = \frac{i}{2} \left(\exp(i\epsilon) - \exp(-i\epsilon) \right) = -\sin(\epsilon)
$$

ON STEADY

ON STEADY

The Bright Side of

Mathematics

ON STEADY

The Bright Side of Mathematics

Complex Analysis - Part 15

Laurent series (generalisation of power series + holomorphic)

$$
\sum_{k=0}^{\infty} a_k \cdot z^k \text{ with radius of convergence } \Gamma \in [0, \infty]
$$
\n
$$
\sum_{k=0}^{\infty} a_k \cdot \left(\frac{1}{w}\right)^k \text{ is convergent}
$$
\n
$$
\left|\frac{1}{w}\right| < \Gamma
$$
\n
$$
|w| > \frac{1}{\Gamma}
$$
\n
$$
|w| > \frac{1}{\Gamma}
$$
\n
$$
|w| > \frac{1}{\Gamma}
$$

$$
\overrightarrow{\qquad \qquad } \longrightarrow \qquad \mathbb{W} \mapsto \sum_{k=0}^{\infty} a_k \cdot \mathbb{W}
$$

$$
\Rightarrow \sum_{k=0} a_k \cdot W \text{ is holomorphic on } \mathbb{L} \setminus \mathbb{B}_\frac{1}{r}(0)
$$

$$
\left(\text{alternatively: constant } + \sum_{k=1}^{-\infty} b_k \cdot z^k\right)
$$

Combine two series:

\n
$$
z \mapsto \sum_{k=0}^{\infty} a_k \cdot z^k \implies \text{with radius of convergence } r
$$
\n
$$
z \mapsto \sum_{k=1}^{-\infty} b_k \cdot z^k \implies \text{with radius of convergence } r
$$
\n
$$
z \mapsto \sum_{k=1}^{-\infty} b_k \cdot z^k \implies \text{with radius of convergence } r
$$
\nwith "radius of convergence" $r_z = \frac{1}{r}$

Definition:

\nA Laurent series written as
$$
\sum_{k=-\infty}^{\infty} a_k \cdot (z-z_0)^k
$$
 is a pair of two series:

\n $z \mapsto \sum_{k=0}^{\infty} a_k \cdot (z-z_0)^k$ with radius of convergence $r_i \in [0, \infty]$

\nprincipal part

\n $-\infty$

$$
\Rightarrow \sum_{k=1}^n a_k \cdot (z-z_n) \quad \text{with 'radius of convergence' } \quad r, \in [0, \infty]
$$

is called the residue of the Laurent series.

The Laurent series is a holomorphic function on $\{z \in \mathbb{C} \mid r_z < |z - z_o| < r_1 \}$

ON STEADY

7 **singularity**

Example:
$$
f(z) = \frac{1}{z(z-1)}
$$
 is holomorphic with domain $\mathbb{C} \setminus \{0, 1\}$ is polared singularities

Proposition: At isolated singularities, we always find a Laurent series locally:

then z_{\bullet} is called an isolated singularity of f_{\bullet} .

Proof later
\n
$$
\mathcal{B}_{\epsilon}(z_{0})\setminus\{z_{0}\}\ni z\mapsto\sum_{k=-\infty}^{\infty}a_{k}\cdot(z-z_{0})\stackrel{k}{=}f(z)
$$

Three cases for isolated singularities:

- **(1) removable singularity:**
- **(2) pole: and**
- **(3) essential singularity:**

$$
\frac{\text{Examples:} }{2} \quad (1) \quad \int(z) = \frac{\sin(z)}{z} = \frac{1}{z} \sum_{k=0}^{\infty} (-1)^k \frac{z^{2^{k+1}}}{(2k+1)!} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2^k}}{(2k+1)!} \qquad \frac{z_0 = 0}{\sin\left(\frac{1}{2}\right)\sin\left(\frac{1}{2}\right)}
$$

(2)
$$
\int (z) = \frac{Sin(z)}{z^2} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k-1}}{(2k+1)!}
$$
 $z_0 = 0$

$$
\text{(3)} \quad \oint(z) = \exp\left(\frac{1}{z}\right) = \sum_{k=0}^{\infty} \frac{1}{k!} z^{-k} \qquad \qquad \mathcal{Z}_{\text{o}} = 0 \qquad \text{essential singularity}
$$

ON STEADY

The Bright Side of Mathematics

Complex Analysis - Part 17

Complex integration:

curve integral, line integral, contour integral

Complex integration on real intervals:

For a continuous map $\gamma : [\alpha, b] \longrightarrow \mathbb{C}$, we define: $\int_{a}^{b} \gamma(t) dt := \int_{a}^{b} Re(\gamma(t)) dt + i \int_{a}^{b} Im(\gamma(t)) dt$

 $\frac{Important\ property: \ [a,b] \longrightarrow \mathbb{C}$ be continuous. Then:

$$
\left|\int\limits_a^b \gamma(t)\ dt\right|\ \leq \int\limits_a^b \left|\gamma(t)\right|dt
$$

$$
\int_{\alpha}^{\beta} e^{it} dt = \int_{\alpha}^{b} cos(t)dt + i \int_{\alpha}^{b} sin(t)dt
$$
\n
$$
= sin(t)\Big|_{\alpha}^{b} + i \cdot (-cos(t))\Big|_{\alpha}^{b} = -i cos(t) + sin(t)\Big|_{\alpha}^{b}
$$
\n
$$
= \frac{1}{i} (cos(t) + i sin(t))\Big|_{\alpha}^{b} = \frac{1}{i} e^{it}\Big|_{\alpha}^{b}
$$
\nProof:
\nAssume $0 \neq \int_{\alpha}^{b} f(t) dt \in \mathbb{C}$. Define: $C := \frac{V}{|V|}$. Then:
\n
$$
\frac{\int_{\alpha}^{b} f(t) dt}{\int_{\alpha}^{b} x(t) dt} \leq \int_{\alpha}^{b} x(t) dt \leq \int_{\alpha}^{b} c^{-1} y(t) dt = c^{-1} \int_{\alpha}^{b} y(t) dt = |V| c \mathbb{R}
$$
\nwe know:
$$
\left|Re(c^{-1} y(t))\right| \leq |c^{-1} y(t)| = |c^{-1}| \cdot |y(t)|
$$
\n
$$
\implies \int_{\alpha}^{b} \left|Re(c^{-1} y(t))\right| dt \leq \int_{\alpha}^{b} |y(t)| dt
$$
\n
$$
\int_{\alpha}^{b} x(t) dt = \int_{\alpha}^{b} \left|Re(c^{-1} y(t))\right| dt
$$

ON STEADY

$$
t \mapsto e^{ct} \longrightarrow
$$

$$
\int_{\tilde{b}} f(z) dz = \int_{0}^{\frac{\pi}{2}} f(\underbrace{y(t)}_{e^{it}}) \cdot \underbrace{y(t)}_{i \cdot e^{it}} dt = i \int_{0}^{\frac{\pi}{2}} e^{2it} dt = i \cdot \frac{1}{2i} e^{2it} \Big|_{0}^{\frac{\pi}{2}}
$$

$$
= \frac{1}{2} \cdot (e^{i\pi} - 1) = -1
$$

Another visualisation:

ON STEADY

The Bright Side of Mathematics **Complex Analysis - Part 19** $\int_{\mathcal{L}} f(z) dz := \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt$ $\chi: [\alpha, \beta] \longrightarrow \mathbb{C}$ continuously differentiable **We can extend this: piecewise continuously differentiable there are** such that $\gamma|_{[a_i, a_{i+1}]}$ is continuously differentiable define: $\int_{0}^{1} f(z) dz$: = $\sum_{i=1}^{n} \int_{0}^{1} f(z) dz$ If $\chi(a) = \chi(b)$, then γ is called a <u>closed curve</u> and we write:

 $\oint_{Y} \oint_{Z} (z) dz$

Important example:

$$
\overbrace{}^{A}
$$

$$
\oint_{\gamma} \frac{1}{\frac{2\pi}{e^{2\pi}}}
$$
, $\gamma: [0, 2\pi] \to \mathbb{C}$
=
$$
\int_{0}^{2\pi} \frac{1}{e^{2\pi}} \cdot i e^{2\pi} dt = 2\pi \cdot i
$$

 $Properities:$ $\begin{array}{c} \uparrow, \uparrow, \downarrow \rightarrow \mathbb{C} \end{array}$ continuous, $\uparrow, \downarrow, \downarrow \rightarrow \mathbb{C} \end{array}$ piecewise continuously differentiable

(a)
$$
\int_{\gamma} (\alpha \cdot f(z) + \beta \cdot g(z)) dz = \alpha \cdot \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz
$$
 for all $\alpha, \beta \in \mathbb{C}$

(b) If
$$
\gamma^{-}
$$
 is γ with reverse orientation,
 $(\gamma^{-}(t)) := \gamma(-t+a+b)$

$$
\gamma(a) = \gamma^{-}(b)
$$

$$
\int_{\delta}^{\delta} f(z) dz = - \int_{\delta} f(z) dz
$$
\n
$$
\int_{\delta}^{\delta} f(z) dz = - \int_{\delta}^{\delta} f(z) dz
$$
\n
$$
\int_{\delta}^{\delta} f(z) dz = \int_{\delta}^{\delta} \int_{\delta} f(\delta(t)) \delta(t) dt = \int_{\delta}^{\delta} \int_{\delta}^{\delta} f(\delta(t)) \delta(t) dt
$$
\n
$$
= \int_{\delta}^{\delta} \int_{\delta} f(\delta(t)) |\delta(t)| dt \leq \int_{\delta}^{\delta} \int_{\delta}^{\delta} f(\delta(t)) |\delta(t)| dt
$$
\n
$$
= \max_{\delta} \int_{\delta}^{\delta} f(z) |\delta(t)| dx
$$

The Bright Side of Mathematics

Complex Analysis – Part 20	
Definition:	$U \subseteq \mathbb{C}$ open, $f: U \rightarrow \mathbb{C}$.
$\overline{f}: U \rightarrow \mathbb{C}$ is called a primitive/antiderivative of f if $f: U \rightarrow \mathbb{C}$ namely derivative.	
Fact: If $f: U \rightarrow \mathbb{C}$ has an antiderivative $\overline{f}: U \rightarrow \mathbb{C}$, then:	
Fact: If $f: U \rightarrow \mathbb{C}$ has an antiderivative $\overline{f}: U \rightarrow \mathbb{C}$, then:	
$\gamma^{(k)}$	$\int_{\gamma} f(z) dz = \overline{\Gamma}(\gamma(L)) - \overline{\Gamma}(\gamma(A))$
$\gamma^{(k)}$	$\int_{\gamma} f(z) dz = \int_{\gamma}^{k} f(\gamma(L) \cdot y) (t) dt$.
Proof:	$\int_{\gamma} f(z) dz = \int_{\Delta}^{k} f(\gamma(L) \cdot y) (t) dt$.
$\gamma^{(k)}$	$\frac{d}{dt} (\overline{f} \circ \gamma)(t)$ at $\overline{f} \circ \gamma^{(k)}(t)$
$\gamma^{(k)}$	$\frac{d}{dt} (\overline{f} \circ \gamma)(t) dt$
fundamental theorem	$(\overline{f} \circ \gamma)(t) dt$

 $\frac{\text{Corollary:}}{\text{If }\oint: \bigcup \rightarrow \mathbb{C}}$ has an antiderivative and \bigvee is closed, then:

$$
\oint f(z) dz = 0
$$

Example: (a) \bigvee = \bigcirc $\{0\}$, \int $(\tilde{\tau}) = \frac{1}{\tau^2}$ antiderivative: $\overline{\Gamma}(\tilde{\tau}) = -\frac{1}{\tau}$ $\Rightarrow \oint_{\gamma} f(z) dz = 0$ \longrightarrow (b) $M = \mathbb{C} \setminus \{0\}$, $\int (z) = \frac{1}{z}$ \rightarrow

> We know: $\oint f(z) dz = 2\pi i$ with $\gamma: [0, 2\pi] \to U$, $\gamma(t) = e^{it}$ \Rightarrow no antiderivative for $\frac{1}{7}$ on $\mathbb{C}\setminus\{0\}$

 δ ^z well-defined!

not allowed:

 \Rightarrow $\widetilde{\gamma_{2}} + \gamma_{2}$ closed curve: $0 = \oint f(\zeta) d\zeta = \int f(\zeta) d\zeta + \int f(\zeta) d\zeta$ $\widetilde{\gamma_{2}}$ + γ_{2} $\widetilde{\gamma_{2}}$ $\sqrt{2}$ \Rightarrow $\int f(\zeta) d\zeta = \int f(\zeta) d\zeta$

$$
\frac{\text{Show:}}{\mathcal{F}} = \frac{1}{2}
$$
\n
$$
\frac{\mathcal{F}(z)}{\mathcal{F}(z)} = \frac{\mathcal{F}(z)}{\mathcal{F}(z)}
$$
\n
$$
\frac{\mathcal{F}(z)}{\mathcal{F}(z)} = \frac{\mathcal{F}(z)}{\mathcal{F}(z)} = \frac{\mathcal{F}(z)}{\mathcal{F}(z)} = \frac{\mathcal{F}(z) - \mathcal{F}(z) - \mathcal{F}(z)(\tilde{z} - z)}{\tilde{z} - z}
$$
\n
$$
= \frac{1}{|\tilde{z} - z|} \cdot \frac{\mathcal{F}(z)}{\mathcal{F}(z)} d\zeta - \mathcal{F}(z) d\zeta = \frac{1}{|\tilde{z} - z|} \cdot \frac{\mathcal{F}(z)}{\mathcal{F}(z)} d\zeta
$$
\n
$$
= \frac{1}{|\tilde{z} - z|} \cdot \frac{\mathcal{F}(z)}{\mathcal{F}(z)} d\zeta - \frac{\mathcal{F}(z)}{\mathcal{F}(z)} d\zeta = \frac{1}{|\tilde{z} - z|} \cdot \frac{\mathcal{F}(z)}{\mathcal{F}(z)} - \mathcal{F}(z) d\zeta
$$
\n
$$
\leq \frac{1}{|\tilde{z} - z|} \cdot \frac{\mathcal{F}(z)}{\mathcal{F}(z)} d\zeta - \mathcal{F}(z) \cdot \frac{\mathcal{F}(z)}{\mathcal{F}(z)} d\zeta = \frac{1}{|\tilde{z} - z|} \cdot \frac{\mathcal{F}(z)}{\mathcal{F}(z)} - \mathcal{F}(z) d\zeta
$$
\n
$$
\leq \frac{1}{|\tilde{z} - z|} \cdot \frac{\mathcal{F}(z)}{\mathcal{F}(z)} d\zeta - \mathcal{F}(z) \cdot \frac{\mathcal{F}(z)}{\mathcal{F}(z)} d\zeta
$$
\n
$$
\leq \frac{1}{|\tilde{z} - z|} \cdot \frac{\mathcal{F}(z)}{\mathcal{F}(z)} d\zeta - \mathcal{F}(z) \cdot \frac{\mathcal{F}(z)}{\mathcal{F}(z)} d\zeta
$$
\n
$$
\leq \frac{1}{|\tilde{z} - z|} \cdot \frac{\mathcal{F}(z)}{\mathcal{F}(z)} d\zeta - \mathcal{F
$$

ON STEADY

Complex Analysis - Part 22

Goursat's theorem: $f: D \rightarrow \mathbb{C}$ holomorphic, closed curve whereThe Image is a T<u>riangle</u> and the inner part lies in D . **not allowed** $\oint_{\gamma} f(z) dz = 0$ **Then:** Basic idea: $0 = \int_{\gamma} + \int_{\gamma} = \int_{\gamma + \gamma}$ **Decompose triangle:** $\oint_{\gamma} f(z) dz = \oint_{\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4} f(z) dz$ $\delta^{1}+\delta^{2}+\delta^{3}+\delta^{4}$ $\sqrt{1 + \gamma^2 + \gamma^3 + \gamma^4}$ = $\oint f(z) dz + \oint f(z) dz + \oint f(z) dz + \oint f(z) dz$

Proof:

The Bright Side of Mathematics

$$
\begin{array}{|c|c|c|c|}\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta j(t) & d\epsilon & \delta j(t) & d\epsilon & \delta k \\
\hline \delta & \delta j(t) & d\epsilon & \delta k & \delta k & \delta k \\
\hline \delta & \delta i & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i \\
\hline \delta & \delta i & \delta i & \delta i & \delta i \\
\hline \delta i & \delta i & \delta i & \delta i & \delta i \\
\hline \delta
$$

Complex differentiability at z_c :

$$
\begin{aligned}\n\mathcal{F}(z) &= \mathcal{F}(z_0) + \mathcal{F}'(z_0) \cdot (z - z_0) + \varphi(z) &\text{where } \frac{\varphi(z)}{z - z_0} \stackrel{z \to z_0}{\longrightarrow} 0 \\
\text{has antiderivative} &\searrow \varphi(z) (z - z_0) &\text{with } \varphi(z) \stackrel{z \to z_0}{\longrightarrow} 0 \\
\Rightarrow \oint z = 0 &\text{with } \varphi(z) \stackrel{z \to z_0}{\longrightarrow} 0 \\
\mathcal{F}(z) \stackrel{z \to z_0}{\longrightarrow} 0 &\text{with } \varphi(z) \stackrel{z \to z_0}{\longrightarrow} 0\n\end{aligned}
$$

length($\chi^{(n)}$)

The Bright Side of Mathematics

Complex Analysis - Part 23

 $f: \mathbb{D} \longrightarrow \mathbb{C}$ **holomorphic** not allowed

$$
\Delta \subseteq D \implies \oint_{\Delta} f(z) dz = 0
$$
\n
$$
\Delta \subseteq D \implies \oint_{\Delta} f(z) dz = 0
$$
\n
$$
\Delta \subseteq D \implies \oint_{\Delta} f(z) dz = 0
$$

Cauchy's theorem (for a disc):

$$
\int_{\epsilon}^{2} f(z) dz = 0
$$
 (*)

$$
\int_{\epsilon}^{2} f(z) dz = 0
$$
 (*)

$$
\int_{\epsilon}^{2} f(z) dz = 0
$$

 $\overline{z_{0}}$

$$
\left| \frac{\overline{F}(\tilde{z}) - \overline{F}(z)}{\tilde{z} - z} - \hat{S}(z) \right| = \frac{1}{|\tilde{z} - z|} \cdot \left| \int_{\tilde{z}} f(\zeta) d\zeta - \int f(\zeta) d\zeta - \hat{S}(z)(\tilde{z} - z) \right|
$$

$$
\stackrel{(\mathbf{x})}{=} \frac{1}{|\tilde{z} - z|} \cdot \left| \int_{\tilde{z} \in \mathbb{R}} f(\zeta) - f(z) d\zeta \right|
$$

$$
\leq \frac{1}{|\tilde{z} - z|} \cdot \left| \int_{\tilde{z} \in \mathbb{R}^n} f(\zeta) - f(z) d\zeta \right|
$$
length $(\tilde{z} \cdot \tilde{z})$

$$
\Rightarrow \int \text{ has an antiderivative on } D \implies \oint_{\tilde{z}} f(z) dz = 0 \quad \text{for each closed curve } \int_{\text{in } D} f(z) dz
$$

ON STEADY

The Bright Side of Mathematics

 $\frac{\text{Definition:}}{\text{The winding number of a curve}}$ around $\text{R}_0 \in \mathbb{C}$ $\left(\text{R}_0 \notin \text{Ran}(\gamma) \right)$ **is defined by:**

$$
\begin{array}{rcl}\n\text{wind}(\gamma, a_{0}) & := & \frac{1}{2\pi i} \int_{\delta} \frac{1}{t - z_{0}} \, d\,z \\
\text{Fact:} & \gamma \text{ closed} & \Rightarrow \quad \text{wind}(\gamma, a_{0}) \in \mathbb{Z} \\
\text{Proof:} & \text{Assume } z_{0} = 0 \quad , \quad \gamma: [a, b] \Rightarrow \mathbb{C} \quad \text{closed} \\
\text{Write } \gamma \text{ as:} & \gamma(t) = g(t) \cdot e^{t \psi(t)} \\
\text{where } \gamma \text{ as:} & \gamma(t) = g(t) \cdot e^{t \psi(t)} \\
\text{Therefore, continuously differentiable} \\
\int_{\delta} \frac{1}{t} \, dt & = & \int_{\alpha}^{b} \frac{1}{\gamma(t)} \, \gamma'(t) \, dt \\
& = & \int_{\alpha}^{b} \frac{1}{f(t)} \, dt + i \int_{\alpha}^{b} \varphi(t) \, dt \\
& = & \int_{\alpha}^{b} \frac{g^{0}(t)}{f(t)} \, dt + i \int_{\alpha}^{b} \varphi(t) \, dt \\
& = & \int_{\alpha}^{b} \left(g(t) \right) \Big|_{a}^{b} + i \psi(t) \Big|_{a}^{b} \\
& = 0 + i \cdot 2\pi k \\
\Rightarrow \quad \text{wind}(\gamma, 0) = k\n\end{array}
$$

ON STEADY

The Bright Side of Mathematics

Complex Analysis - Part 25

 $winding$ number:

$$
\text{wind}(\gamma, z_0) := \frac{1}{2\pi i} \oint_{\gamma} \frac{1}{z-z_0} dz
$$

Definition: F

wind

or
$$
\gamma: [a,b] \rightarrow \mathbb{C}
$$
 closed:
\n $Ext(\gamma) := \{ \overline{z}_0 \in \mathbb{C} \setminus Ran(\gamma) \mid wind(\gamma, z_0) = 0 \}$
\n $Int(\gamma) := \{ \overline{z}_0 \in \mathbb{C} \setminus Ran(\gamma) \mid wind(\gamma, z_0) \neq 0 \}$

Extending Cauchy's theorem:

$$
f: D \longrightarrow C \text{ holomorphic } f \text{ closed, Int}(y) \cup \text{Ran}(y) \subseteq D
$$
\n
$$
D = \text{disc} \quad \text{(iv) } y \text{ real, } y
$$
\n
$$
D = \text{cctangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{rectangle} \quad \text{(v) } y
$$
\n
$$
D = \text{
$$

Cauchy's theorem (general version):

$$
f: D \longrightarrow C \quad holomorphic \quad , \quad \gamma \quad closed \quad , \quad \text{int}(\gamma) \cup \text{Ran}(\gamma) \subseteq D
$$

$$
\implies \quad \oint f(z) dz = 0
$$

Cauchy's theorem (for some domains):

$$
f: D \longrightarrow C \quad holomorphic \quad y: [a, b] \longrightarrow D \quad closed curve,
$$

If $\int D = Q$ or $\int D$ star domains \Leftrightarrow $\int D$ \Leftrightarrow $\int D$ $f(z) dz = 0$

Appendix:

Proof from part 23 can be transformed to a proof for domain $D = \bigcirc$

$$
\Rightarrow
$$
 \int has an antiderivative on D \Rightarrow $\oint f(z) dz = 0$ for each closed curve γ in D

The Bright Side of Mathematics

Split it up:

$$
\int_{\alpha,\delta}^{\alpha} f(z) dz + \int_{\alpha,\delta}^{\alpha} g(z) dz = C
$$

What happens for $S \rightarrow 0$?

 $\sqrt{\Gamma^{(1)}}$ $\sqrt{\xi_{i}}$ (1) $\overline{}$

$$
f\left(\bigcup_{\begin{array}{c}\n\int_{\mathbb{S}^{4}}\mathbb{I}(z) dz \\
\text{if } \bigodot_{\begin{array}{c}\n\int_{\mathbb{S}^{4}}\mathbb{I}(z) dz \\
\text
$$

$$
\frac{\gamma_{c,s}^{(t)}}{\gamma_{c,s}^{(t)}}
$$
\n
$$
\frac{\gamma_{c,s}^{(t)}}{\gamma_{c,s}^{(t)}}
$$

In summary: **For** $\delta \rightarrow 0$:

$$
\int_{\Gamma^{(1)}} g(z) dz + \int_{\Gamma_{\epsilon}^{(2)}} g(z) dz = 0
$$

Result:

$$
\int_{\Gamma^{(1)}} g(z) dz = \int_{\Gamma_{\epsilon}} g(z) dz
$$
 same integral value

ON STEADY

 $\partial B_r(z_o)$

The Bright Side of Mathematics

Complex Analysis - Part 27

Cauchy's integral formula

$$
\oint_{\gamma} f(z) dz = 0
$$

for all keyhole $\Im \mathcal{B}_{\epsilon}(z)$ **and small enoughcontour**

$$
= \oint_{\partial B_{\epsilon}(z)} \frac{f(\zeta)}{\zeta - z} d\zeta = \oint_{\partial B_{\epsilon}(z)} \frac{f(\zeta) - f(z) + f(z)}{\zeta - z} d\zeta
$$

$$
= \oint_{\frac{\partial B_{\varepsilon}(z)}{\partial \xi(z)}} \frac{J(\zeta) - J(\zeta)}{\zeta - z} d\zeta + \oint_{\frac{\partial B_{\varepsilon}(z)}{\zeta - z}} \frac{J(\zeta)}{\zeta - z} d\zeta
$$

$$
\frac{\int_{\frac{\partial S_{\varepsilon}(z)}{\partial \xi(z)}\zeta - \xi(z)} d\zeta}{\zeta - z} d\zeta = \lim_{\zeta \in \mathfrak{R}_{\varepsilon}(z)} \frac{J(\zeta) - J(\zeta)}{\zeta - z} \cdot 2\pi \cdot \varepsilon
$$

 \Box

The Bright Side of Mathematics

Complex Analysis - Part 28

Fact: holomorphic. Then:

(a)
$$
f^{(n)}(z)
$$
 exists for all $z \in \mathbb{D}$, $n \in \mathbb{N}$

(b)
$$
f^{(h)}(z) = \frac{h!}{2\pi i} \oint_{\partial B_r(z_i)} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta
$$

$$
\begin{pmatrix}\n\cdot & & & \\
\cdot & \cdot & & \\
\hline\n\cdot & & & & \\
\
$$

for all
$$
z \in \mathcal{B}_r(z_0)
$$

 (c) **In** $\mathcal{B}_r(z_0)$, f is a power series: $f(z) = \sum_{k=0}^{\infty} \alpha_k (z - z_o)^k$ for $\alpha_k = \frac{1}{k!} \cdot f^{(k)}(z_o)$

Proof:

 $2\pi i \int(z) = \oint_{\text{Cauchy's}} \frac{f(\zeta)}{\zeta - z} d\zeta$ ζ Cauchy's
integral **formula** = $\oint_{\partial B_r(z_0)} \frac{f(\zeta)}{\zeta - z_0 + z_0 - z} d\zeta$ = $\oint_{\partial B_{r}(z_0)} \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} d\zeta$, $|q| = \frac{\overbrace{z - z_0}{\zeta - z_0}}{\overbrace{z - z_0}{\zeta - z_0}} < 1$
geometric series

$$
= \oint_{\partial \mathbb{B}_{r}(z_{0})} \frac{f(\zeta)}{\zeta - z_{0}} \cdot \sum_{k=0}^{\infty} q^{k} d\zeta
$$

uniform convergence

$$
\frac{d}{dz} = \sum_{k=0}^{\infty} \oint_{\partial B_r(z_0)} \frac{f(\zeta)}{\zeta - z_0} \cdot \left(\frac{z-z_0}{\zeta - z_0}\right)^k d\zeta
$$

$$
= \sum_{k=0}^{\infty} \widetilde{\alpha}_{k} \cdot (z-z_{0})^{k} \quad \text{for} \quad \widetilde{\alpha}_{k} = \oint_{\partial B_{r}(z_{0})} \frac{f(\zeta)}{(\zeta-z_{0})^{k+1}} d\zeta
$$

ON STEADY

The Bright Side of Mathematics

Complex Analysis - Part 29

 $\frac{\text{Cauchy's inequalities:}}{\text{If } \mathcal{D} \longrightarrow \mathbb{C} \text{ holomorphic } \text{, } \overline{\mathcal{B}_r(z_0)} \subseteq \mathbb{D}.$

Then: $\left| \int^{(n)}(z_0) \right| \leq \frac{n!}{r^n} \cdot \sup_{\substack{z \in \partial B(z_0)}} |f(z)|$

Proof:

 $\left| \int^{(n)} (z_0) \right| = \left| \frac{h!}{2\pi i} \oint_{\Omega} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right|$ parametrized curve: $\Gamma e^{i\zeta} + z_0$ $t\in[0,2\pi]$

 $= \left| \frac{h!}{2\pi i} \int_{0}^{\frac{2\pi}{\pi}} \frac{f(r e^{it} + z_0)}{(r e^{it})^{n+1}} \cdot r i e^{it} dt \right|$

 $= \left[\frac{h!}{2\pi} \cdot \frac{1}{r^n} \int_{0}^{2\pi} f(r e^{it} + z_0) e^{it(-h)} dt \right]$

 $\leq \frac{h!}{2\pi} \cdot \frac{1}{r^n} \int_{0}^{\pi} \left| \int_{0}^{r} \left(r e^{it} + z_0 \right) \right| dt \leq \frac{h!}{2\pi} \cdot \frac{1}{r^n} \cdot 2\pi \cdot \sup_{z \in \partial B_r(z_0)} |f(z)|$ \leq sup $f(z)$ \Box

 Δ **P** Application: $f: \mathbb{C} \longrightarrow \mathbb{C}$ holomorphic and <u>bounded</u> $\begin{pmatrix} \sup_{z \in \mathbb{C}} |f(z)| = c \end{pmatrix}$

$$
\Rightarrow |f'(z_0)| \leq \frac{1!}{r!}c \quad \text{for all } r > 0, \quad z_0 \in \mathbb{C}
$$
\n
$$
\Rightarrow \quad f'(z_0) = 0 \quad \text{for all } z_0 \in \mathbb{C}
$$
\n
$$
\Rightarrow \quad f: \mathbb{C} \to \mathbb{C} \quad \text{is constant} \quad \left(\text{sin}: \mathbb{C} \to \mathbb{C} \right)
$$

(Liouville's theorem)

The Bright Side of
Mathematics

Complex Analysis – Part 30	
\n $\int : \mathbb{C} \longrightarrow \mathbb{C}$ holomorphic with known values\n $\int (a, f(x)) x \in \partial \beta_1(x) \rangle$ \n	\n $\frac{a}{2} : \mathbb{C} \longrightarrow \mathbb{C}$ holomorphic with same values on $\partial \beta_1(x)$ \n
\n $\frac{a}{2} : \mathbb{C} \longrightarrow \mathbb{C}$ holomorphic with same values on $\partial \beta_2(x)$ \n	
\n Identify theorem: $\int x \cdot 3 : \mathbb{D} \longrightarrow \mathbb{C}$ holomorphic, $\mathbb{D} \subseteq \mathbb{C}$ open domain (conversable)\n	
\n There:\n $\{ z \in \mathbb{D} \mid f(z) = g(z) \}$ has an socomulation point in \mathbb{D} \n	
\n $\int z = 3$ \n	
\n There is $c \in \mathbb{D}$ with $\int_0^{\infty} (c) = \int_0^{\infty} (c) + 6r$ all $n \in \mathbb{D}, 1, 2, ...$ \n	
\n What is an accumulation point\n $\int c \mathbb{D}$ is called an <i>acoumdation point</i> of the set $\mathbb{M} \subseteq \mathbb{D}$ \n	
\n if for all open set U with $p \in U$: $ \mathcal{N}[\hat{f} \cap M \neq \emptyset \cap \mathbb{M}]$ \n	
\n $\left \frac{a}{b} \mid \frac{b}{b} \mid \frac{c}{b} \mid \frac{c}{b}$	

for (3) (2) closed closed (3) is also open: connected (2) (1)

The Bright Side of Mathematics

Complex Analysis - Part 31

Identity theorem: open domain (connected) $f, g: \mathbb{D} \longrightarrow \mathbb{C}$ holomorphic.

 $\{z \in D \mid f(z) = g(z)\}$ has an accumulation point in $D \implies f = g$

Example: $cos : \mathbb{R} \longrightarrow \mathbb{R}$ given by $cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$

Consider a holomorphic function $g: \mathbb{D} \longrightarrow \mathbb{C}$ with $\mathbb{D} \cap \mathbb{R} \neq \emptyset$ **and with** \mathbb{R} $\left.\frac{\partial}{\partial \rho_{\alpha}}\right|_{\mathcal{D}_{\alpha}} = \cos\left(\frac{\partial}{\partial \rho_{\alpha}}\right)$

identity th

$$
\Rightarrow g(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k} \quad \text{for every} \quad z \in \mathbb{D}
$$

cos has a unique extension for C as a holomorphic function.

 \bigcup

General formulation:
$$
f \in C^{\infty}(\mathbb{R})
$$
 and $\mathbb{D} \subseteq \mathbb{C}$ open domain (connected)
with $\mathbb{D} \cap \mathbb{R} \neq \emptyset$ \longrightarrow \mathbb{R}

with
$$
\theta|_{D_{\Omega}R} = f|_{D_{\Omega}R}
$$

ON STEADY

The Bright Side of Mathematics

Complex Analysis - Part 32

Residue Residue Theorem $\overline{\gamma}$ **Short recapitulation: Closed curve integrals:** $f: \mathbb{D} \longrightarrow \mathbb{C}$ holomorphic. (1) $F: \mathbb{D} \longrightarrow \mathbb{C}$ antiderivative of $f \in \mathbb{F}^1 = f$ \mathcal{D} \Rightarrow $\oint_{\gamma} f(z) dz = 0$ (2) \mathbb{D} star domain or $\mathbb{D} = \mathbb{D}$ \Rightarrow $\oint_{\gamma} f(z) dz = 0$ (3) $\mathbb{D} = \mathbb{C} \setminus \{t_{0}\}, \quad \mathfrak{f}(z) = \frac{1}{z-z_{0}} \implies \oint f(z) dz = 2\pi i \cdot \text{wind}(\gamma, z_{0})$

Combine (1) and (3) for Laurent series:

 γ

$$
\mathbb{D} = \bigodot = \begin{cases} z \in \mathbb{C} \mid r_z < |z - z_o| < r_1 \end{cases}, \quad \mathfrak{f}(z) = \sum_{k=-\infty}^{\infty} a_k \cdot (z - z_o)^k
$$

$$
\implies \oint f(z) dz = a_{-1} \oint (z - z_o)^1 dz = a_{-1} \cdot 2\pi i \cdot \text{wind}(y, z_o)
$$

Test: Let f be a Laurent series defined on
\n
$$
\text{Res}(\frac{1}{2}, \frac{1}{2})
$$
 residue
\n
$$
\text{Res}(\frac{1}{2}, \frac{1}{2}) = \alpha_{-1} = \frac{1}{2\pi i} \oint_{\mathbb{R}^2} f(z) dz
$$
\n
$$
\text{Res}(\frac{1}{2}, \frac{1}{2}) = \alpha_{-1} = \frac{1}{2\pi i} \oint_{\mathbb{R}^2} f(z) dz
$$
\n
$$
\text{Definition:} \quad \text{Let } \int : \mathbb{R} \to \mathbb{C} \quad \text{be holomorphic and } z_0 \text{ be an isolated singularity of } f.
$$

If $\overline{B_{\epsilon}(z_0)} \setminus \{z_0\} \subseteq \mathbb{D}$, then we define:

$$
Res(\xi, z_{0}) := \frac{1}{2\pi i} \oint_{\partial B_{r}(z_{0})} dz
$$

residue of f at z_0

ON STEADY

Complex Analysis - Part 33 $\mathbb D$ **Residue: Res** $(\xi, \xi) := \frac{1}{2\pi i} \oint_{\xi} (\xi) d\xi$ ($\hat{\xi}$) $\partial B(\epsilon)$ $\mathbb{B}_{\epsilon}(z_{0})\setminus\{z_{0}\}\subseteq\mathbb{D}$ $Example:$ $f: \mathbb{C} \longrightarrow \mathbb{C}$ holomorphic \rightsquigarrow $\widetilde{f}: \mathbb{C} \setminus \{z_{0}\} \longrightarrow \mathbb{C}$ $\widetilde{f}(z) := f(z)$ $Res(\xi, z_{0}) := Res(\tilde{\zeta}, z_{0}) = \frac{1}{2\pi i} \oint f(z) dz = 0$ $\partial B_{c}(z_{0})$ **Proposition:** $f: \mathbb{D} \longrightarrow \mathbb{C}$ holomorphic, z_0 isolated singularity. If $\int_{\frac{R(z)}{R(z)}\setminus\{z\}}$ is bounded, then $Res(\xi,z_0) = 0$. **Proof: Res**

The Bright Side of

Mathematics

 \oint : $\mathcal{D} \longrightarrow \mathbb{C}$ holomorphic, z_{0} isolated singularity. \mathcal{E}_{0} pole \Rightarrow the function $h: \mathcal{B}_{\varepsilon}(\mathcal{E}_{0}) \rightarrow \mathbb{C}$ with $h(\mathcal{E}) = \frac{1}{\mathcal{C}_{\varepsilon}}$, $h(\mathcal{E}_{0}) = 0$ **is holomorphic**

Residue for poles

Example:

$$
f(z) = \frac{1}{z-z_0} \qquad \Longleftrightarrow \qquad h(z) = z-z_0
$$

Fact: has a pole at (of order

 \iff there is a unique \mathbb{N} and non-vanishing holomorphic function $g: \mathbb{S}_{\epsilon}(\epsilon_{0}) \longrightarrow \mathbb{C}$ such that $\int (z) = (z-z_0)^N$ $q(z)$ for $z \in \mathcal{B}_c(z_0)$

 \iff there is a unique $N \in \mathbb{N}$ and a holomorphic function $\widetilde{g}: \mathbb{B}_{\epsilon}(\epsilon) \to \mathbb{C}$: $f(z) = \frac{a_{-N}^{x0}}{(z-z_1)^N} + \cdots + \frac{a_{-1}}{(z-z_1)^1} + \widetilde{g}(z)$ for $z \in \mathbb{B}_{\epsilon}(z_0)$

Theorem: $f: \mathbb{D} \longrightarrow \mathbb{C}$ holomorphic, z_{0} isolated singularity.

If
$$
z_0
$$
 is a pole of order N, then:
\n
$$
Res(\xi, z_0) = \frac{1}{(N-1)!} \lim_{z \to z_0} \left(\frac{d}{dz} \right)^{N-1} (z-z_0)^N \int_z dz
$$

<u>Example:</u> $f(z) = \frac{1}{z^2(1+z)}$, $z_0 = 0$ is a pole order 2

$$
Res(\xi, z_{0}) = \frac{1}{1!} \lim_{z \to 0} \left(\frac{d}{dz}\right) (z - 0)^{2} \int (z - 0)^{2} \lim_{z \to 0} \frac{d}{dz} \left(\frac{1}{1 + z}\right)
$$

$$
= \lim_{z \to 0} \left(-\frac{1}{(1 + z)^{2}}\right) = -1
$$

$$
\frac{\text{Then:}}{\gamma} \quad \oint f(z) dz = \sum_{j=1}^{n} 2\pi i \cdot \text{wind}(\gamma, z_j) \cdot \text{Res}(\xi, z_j)
$$

Proof: open disc Cauchy's theorem

ON STEADY

The Bright Side of

 $\int_{0}^{\infty} x^{4} dx = \int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} f(x) dx$ **Hence:**

$$
\int_{-\infty}^{\infty} \frac{1+x^6}{1+x^6} dx = \lim_{R \to \infty}^{\infty} \int_{\pi}^{\infty} f(z) dz = \lim_{R \to \infty}^{\infty} \int_{\pi}^{\infty} f(z) dz
$$

\n
$$
= 2\pi i \sum_{m=1}^{\infty} \text{Res}(\frac{1}{3},z)
$$

\npoles: $1+x^6 = 0 \implies \frac{1}{2}e^{-\frac{1}{2}t} + \frac{1}{2}e^{-\frac{1}{2}t}\frac{1}{2} = e^{-\frac{1}{2}t}\frac{1}{2} + \frac{1}{2}e^{-\frac{1}{2}t}\frac{1}{2}$
\n
$$
\int_{-\infty}^{\infty} \frac{x^9}{1+x^6} dx = 2\pi i \cdot (\frac{1}{6}e^{-\frac{1}{6}t} + \frac{1}{6}e^{-\frac{1}{3}t}\frac{1}{6} + \frac{1}{6}e^{-\frac{1}{3}t}\frac{1}{6} + \frac{1}{6}e^{-\frac{1}{3}t}\frac{1}{6})
$$

\n
$$
= \frac{1}{3}\pi i (i \sin(-\frac{\pi}{6}) + i \sin(-\frac{1}{6}x)) + i \sin(-\frac{1}{6}x)
$$

\n
$$
= -1 - \sin(\frac{\pi}{6})
$$

\n
$$
= \frac{1}{3}\pi (1 + 2 \sin(\frac{\pi}{6}))
$$