The Bright Side of Mathematics

The following pages cover the whole Complex Analysis course of the
Bright Side of Mathematics. Please note that the creator lives from
generous supporters and would be very happy about a donation. See
more here: https://thsom.de/support

Have fun learning mathematics!
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Complex Analysis — Part 1

analysis of differentiable functions g: @ —> Q:
(ins’feaol of . R — IR)

(o%e)
[K C (E :> helpful for rveal problems like X:$in(x) Ax = E
1+ xt e

— 00

We need: e sets

} Start Learning Mathematics

e complex numbers

basic knowledge of continuous and differentiable functions
e basic knowledge of power series\/(
Real Analysis

(some videos)

Some definitions: (]:

is a set with a distance (metric space)

"

: S~— distance: |z—w|

7\

~
/

& absolute value in CC

A sequence (?;")helN C . is convergent to ae

= (|2n— O‘Dné:lN R is convergent to 0

& VYe>0 dNeN YnzN : |2.-al<c¢

T;

£ —ball: :Be(o) P = {we@ | |v-a]|< E}

A function 5(]: —> € is continuous at  2,eC if for all sequences (%h)hem c C:

h>x

t,— %, implies g(?;,,) Zs (%o) ]

means: (%h)hem is convergent 1o %,
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5:-. @ —> C differentiable at z,?

x domain can be any open set W< C

Definition: A S C  is called open if

@
Yzell des0 - :Bc_(lj‘i_:u

Definition: U Q(E_ open , 2,€ W . 5'- U — is called

(complex) differentiable at z,e A if

5B -5

- »

For all sequences (ZJ%N - \A\{zo’s with  2,— 2, |

$(z20- £(20)

t.- &,

exisTs,

the sequence

\\4

converges (To the same number),
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WEC open, 2z,e L.
W

5: W —> C  is (complex) differentiable at 2, C

> fo SO M

eXiS“'Sc
2w, 1 -2,

| >
¢ C

<_—__> there is a function: A5 L W—> C with

5(2) = 5(20) +(2-2,) 'A5.20(2) for all 2€ U

and A

. s contfinuous at 2z, .
1 Co

is called

Definition: g\(zo) . = A&,zo(z") — Lm f(%) —5(%)

=>%, T - 10

the (complex) derivative of § at 2z, .

Examples:
(a) 5@%61 | &(z)—_—yh.g_J,c for mce(
§(z> :(m.z°+ C) + (1—%0)'\":_/ \
w As 5 (2) = Sk =m
(b) JC: (E . (]: A | m N
2 —> 2 g g

differentiable at #,= 0°? §)(O> = ff;m §(Z> _5(0) — ﬂ,&m z_

>0 t-0 >0 1

- 4 does not existr
/\ 2,, = 1— 2:" = L = 1 hﬁo; 1 /
¢ " z, [
L . - :, »(
‘\ - __l'_ _"' “n h-»0a
=T T z, - L T -] — -1 é\; is not differentiable at O

12
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(regular/ (complex) analytic/..)
(

Definition: |/ < open . 5: u — (]:_ is called holomorphic (on )
A

(&

1if W= C ,  The holomorphic function is called entire.

Q it 5 is (complex) differentiable at every 2z, \\ .

Properties: (a) g is holomorphic :> g is continuous
(b) S’j: u%(]: holomorphic => 5+j ; 53 holomorphic

(¢) Sum rule, product vule, quotient rule and chain rule for derivatives hold.

Examples: (1) 5: (]:%d: | 5(2) - a. 2", a . 2", 01_2_1 v a,

A polynomial is an entire function, with a,,..,6,€C

m-1 -1

5?(2) = Mo,z + 0“'1)'dmh{ 3 + e 4+ Z-QL.21.+ a,

(z) §: (]:\f_O} —> (]:_ | 5(2) = 1? is holomorphic

lf({PO\WOMia\
P
(3) §: (]:\VS('_/ —> (]:_ | }\(%) = @ is holomorphic

NEZAROR; D
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N N

complex plane 7

vector space

N
\
7~ >

2
C % R with a multivlicatior

1 1
Remember: Each map 5: (]: %(]: induces a map 57{: [R —> [R (and vice versa)

Example: §: C—C T RN T

2 —> 2°

NS
7

] >
-1

X+L>/I% (X+L)/)l = XL+ZL><>/—7/Z'

S R=R @) (7
e (i ) -(0)

1 Xo '
Definition: A map 51{: [R1% [R is called (totally) differentiable at (Y)QIR

1x1 7 q
it there is a matrix J € [R and a map (b : lR —> lR with:

56 = 6D+ I(E-6) + #(e)

linear approximation eve 29((;)) Qﬁ_)();
-G

(,) is called the Tacobian matrix of 5?\ at ();l;) < Rl .

| |
_ [ % N5
J — (Q—: ﬁ‘) (evaluate at <§)>
| |

B 51{: [RT_% {R’Lz ) J N <2x —ZY

\\ A

0

2 1 (Euc\ioleam)j‘
\](X Xo) +()I'Y°) " norm
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(1) §: C—>C s (complex) differentiable at z,& C if

There is 5\(20) c <[: and a function L€: C — C with:

5(2) = o((iﬂ + f\(a,)- (z—z,,) + L((t) where Y(ﬂ bzg 0

2-2,

1 1
(2) 5?\: [R —> R is called (fotally) differentiable at (?’.)sz if

1x1
there is a matrix J c [R and a map <) : l{Rl~> |R1 with:

J%((;» - fa((xy)) ¥ J((;)— ("yﬂ + {)(@)) rere 4)5;;)(2)' ity

Question: In which cases does a matrix—vector multiplication
represent a multiplication of complex numbers?

Let's check: /):/-Z\\ = (G\'X—L)’) + i (bx+ “7)
(a\+c'.|a) (x+i.)l)

-G
L o )l B Lx + oy
Theorem: 5: Q: —C s (complex) differentiable at 2z, = X,,+ly,€ C

<::> 5\'{: [R'L% H{l is (totally) differentiable at ();/:)QR?.

and the Tacobian matrix at (;") has the form: 2 —L’>

L o
.~ % u(x.y)
<——> For SR(()’)} = ( V(X ;I/)) the Cauchy—Riemann equations are satisfied:
two maps: @B_ _ r9_\/_ nd 9—\& _ _?l_ at point

R— R IX dy Ay . (Xesye)
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U
Ug
Theorem: M Q(E, open . /I\

5: u —> (]: is holomorphic ' =
1
<:> Real part of § as a function on uRQ[R
W: UR _>R
1
and imaginary part of _g as a function on MRQ[R
V: UR —>R
Fulfil: Ql*_ _ ?l nd 9_“_ ____?L at all points
Ix 9y 9y X (x,y)e \AR

@ £ C—>C, @)= = §xeiy) = x+iy_
uxy) Vv(x.y)

. _ du _
9% |1| Ay ﬁ
%_\; = 1 _‘D_v =0 :> 5 is holomovrphic

£ C—>C, §G&)=7 = iy = x+ily)
u(x.y) vixwy)

Mo

IX

) X => 5: is not holomorphic
v

5 =1

. C—=>C , §@) =iz = Sxeiy) s(eeiy)+ b(x“-ﬂ

= x+u2xy—y +iX -

9\1\ — 9_& - - - B 1 1

9% I Iy z)’ 1\ =(>< -y —}/>+L(2xy+ x)
5 L \ Ty vy)
Vv \'4 _ \AX. Vxl
5 = x5 =) ! !

=> § s holomorphio
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5: u —> (]: holomorphic
L~ [

E(},A Wirfinger derivatives g—g(lo)

dz 9 JZ ?

N\ Y

§(Z) 0
Sl =arit o 50D =050

9_\—‘\_ Ql(x.)
R wed map (1) > f(xeiy)
1/%u .9 9 .9 7
vy bt
v _u
dy oy

95 9F
X 2y
Deﬁhi'\'iOV\: (); — 1_(&._,“2 D_;: 1_(2 +Li
92 L \9x 9y 2% 1 \ox 9y
le: S N U N RS R % 9 .
Exampe. 5(2) = 2 _(X+L>/) = X-)/ -t-L'ZX-y _> DX — ZX+LZ>/ :ZZ
g_fl =‘ZY+CZX =i
AT | ) 9f _ 1_( N
D_Z :7 12 +-2iz | = 0 ’ 92 ) lz-i-liz —Z%
act: : %(]:_ holomorphic <_> Q_i =0 at all points in U
In this case: 5\ = (9—§

2
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Example: Exponential function: exf(&) = Z
k

Definition:

For a sequence of complex numbers

Power series

o

=0

z
k!

Qo[ a1, Q.L / as,.-

© )

oQ
. k
the function 5:: :D — , 2> g ;O\k (2—2,) expansion point

= ’
with LD — {?_—e (l: ‘ g ;O\k<2—2,,7 is convevqem’(}
k=0

k=0

is called a power series,

oQ
. . k
Example: Geomelric series: E ;Z

D= B(0)

n

act:

1
k=0 "—2

/& divergent for |'2:| > 1

such that :BF(Z,,) < :D for TIC€ [0,0o)

C

=D for I's

for

/

2] < 1

N
~
\H

oQ
For Zak(z—zo)k ) There is a maximal ¢ [0,00) U %_oo}
k=0

\ ,convergence

~
—

and for 2€C\ BF(ZD the power series is divergent,

Cauchy—Hadamard:

=

L= fimsplal elo,m) v §od 57

is called the radius of convergence,
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Definition: A sequence of functions L’{1: u —> (]: (he: ﬂ\l)

is uniformly convergent to 5; u — (]:

5». _5 ||m B O .
—
= S‘%\é ‘)U\\ (2 - $®]

if

Result for power series: et §: 3'_(20) %(]: / }(Z) _ Zak_ (2—Z°)k T
k=0

be a power series with radius of convergence > 0. |

>
. = k
Then: (1) Zak' (2—2) is uniformly convergent on .3(:(2,,) with ¢ < r @
k=0

- n
(seaguemoe of functions :S:ht SC(ZO) S q: ’ gh(z) = Zak'(%_ Za)kis uniformly comvevqem’f)
k=0

o0 I('1
(2) Zak-k(E—Zﬂ is uniformly convergent on 3C(Z,,) with ¢ < r
k=1

\

n -
(se%uemce of functions 5—\“5 SC(Z‘,)% (]: , S)h(z) = Zak. k(}— Zo.)k i1s uniformly comvevqem/
k=0

(3) ;Sj is complex differentiable with ) N k-1
2)= ) 0 klz2-2
f0=Sane-e
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: = k
Result for power series: et . 3'_(20) — / J((Z) — zak, (2-2)
k=0
be a power series with radius of convergence r> 0.
|

. = k
Then: (1) ZQR. (z—zo) is uniformly convergent on :BC(&,) with ¢ < r
k=0

Proof:

S O
(2) Zak-k(z—ZD is uniformly convergent on gc(zo) with ¢ < r
k=1

(3) 5 is complex differentiable with S)(Z) :ZQk-k<2—Z—o)k-1
k=1

Assume Z,= 0. CS:“: 3(;(0) — d:; 5,,(2) - iak' Zk

D55l = sup | Sat] b |S |
n — O = = Sl L a.- z
supremum norm ./’)w Eek@L(LO) k=n+4 ‘ Z€£TO) N->oo kZh-:A k
o 3.(0)
A —ineguality f i s
< Su L | oy |- 1A
1652(70) N>oo (o ‘ vgc
l/ 0O .
o ) o ) Zak-Fk convergent for ¢ < F<rT
< a < . k=0
— k=zh.‘”| kl T $ kZh.:.1 Hence there isB with |ak?k| < 3
N7 Bz lal 7t = faftE]
CJ.
- 1
= radius of convergence for Zak-k-zH .
k=1T
k-4 [‘ kl -4
S .l 1 —
same proot as in (1) kV—r;o:‘) | Ml (k+> "
Iad = |<'1 N k . k
(3) Jt(z)::;,qk.k.z : PN(z)::kZ:ak.z , ﬂN(z)::kzN‘:Lk.z
= = =N+

) - 50) )

PN(“D ") _ P:J(z)' +

T |: Wwﬁwﬁﬂ**ﬁ*%Mﬂ-—ﬂa

C1N(Z-+L) = ﬂN(Q

Z

+

- 56

h h
e —~Y——" ————
\-—/\/LT/ N->oo C Ngmo
A— 0 —>0
0 k 0o
_ 2k k |
For C . thth-@w“D lszhak z _ ildkl (2+D _ 2" aeom—e’rvknc sum ::vmma:
l’l h k= N+4 VYL) _1 — J
N\ 1-4 2(1

k-1 k-2
@ (2+L)- zo+ (2+L) : 21 t .o e c1= z
_ zth

-t (2eh) 2

< 2|ak|.fgk'4.|< M 0O
k= N+1
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> holomorphic on ifs open disc of convergence @
k

exists and is a power series

)
§ exists and is a power series

Examples: (1)

ﬂXP(%) = Z = (radius of convergence: T = oo)
k=

k!
0
x k-4 X kA =
\ _ ke _ t r
&xp(z)_kz1—| _kz1(_—m = > = exp(?)
(2) N k =0,4,8
COS(E) '= Z(_ﬂml z¢ , k=0,4.3,..
k=0 ' 12" k=1,5,9,13,...
oo (¢ k: -2 . k=2,6/10,...
, . z
connection? &XP(LZ) o kz: Lk—l) _sz ’ k=3"?_'1/|’
=0
2 k=0,4,8,..
™ CiaX _iz* k=1,5,9,13
(—LZ:) § L2 k 1201y 10 e
expl-iz)= > —
P( (2) Z | S k=2,4.0,..

12 k=3,

exp(iz) + expliz) = > filgy 2 = L cos(2)

=> cos(2) = %(&xg(i-z) + &xp(—i-z)>
::> CoS\ (Z) = %(6)(?02) - &XP(—L-})) — —~Sdh(2>
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logarithm /DJ - inverse function of (;XF

In R : eXF_. R —> (O,m) /ycxf’ /
KOJ: (O,m) —> (R /(//; j

exp(x+y) = exp(x)-exp(y)

In C : 2=Xx+iy , €X (?:) = &X (X+Ly’)
y F F ‘axr('q) ‘L: &xr(iy) 6><|9("“}’>

= exp(x)- ex (Ly) s
Euler's formula /C_'os(y)+(',sin(y) =exp 0) = 1

T . smallest positive zero

define: 5 i ot cos: R>R

N
]/

We gef: ~
axr(t—“—) = cOs('z') + Lséh(—'zl—>
= LJLh("‘)
(use derivative/monotonicity)
axr(t-’ﬁ‘) = and &xr(tl’:‘r) = 1
Periodicity: C’,XF(% +2’1\|’L-|<> = @XF(%} for all ke%, reC

L-> not injective

AN
.L,"{\ m |/vao|ius exp(x)
7tk ST

X bijective! D ~

Definition: [(D; D_W —> stripe  is called the principal value
of the logarithm function,

Properties: [0 (l‘e,xr(itf)> — K’j(r> + LLf Ll0€ («.. ™

L ("’xf( M) i
[‘fj(f'xf(“ﬁ) =3 _;,f.rszm Jump
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L"’___L.L-Z,-L LI'LZZ
% s g ) = Log () + L3y ()
rower defiitionin Ri 450 0\'"7 _ (d;)h = exp (LOJ ((0\17>'" >>

m, ne Z\jo}
:CX‘)(M-LOJ(0F>>

= CX‘) ( %Lo\j(a))
a>0 , xeR: o:i= CX‘)(X'LOJ(Q)>

Power definition in (]:: a>0 , 2eC : a,Z:: ex‘)('z 'LOJ(Q)>

t
for example: e = CXF(_&) /1\
tor complex base? aé:Q,IT , 2¢C : 4
7
&% = ex‘)('z- %‘U (a))
AN :D‘W
\ K principal value of the logarithm
principal value of the power in general

2 2 S
t z Z,+ -2
be careful in calculations: a' ot =a \/ (OL? -‘,LL a'?
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Laurent series  (generalisation of power series + holomorphic)

kz,ckk- %k with radius of convergence € [Ofw]
=0
. ! ‘1—‘ <r
ZQR-C—> is convergent "
k=0 W <:>
w| > 1?

chain rule

= -k —
:> W= ZQR- W is holomorphic on (]:\ 3,(0)
k=0 3
P k
<aHevv1aTive\t4: constant + Zbk-z j

k=-1

Combine two series: 2 > Zak' zk ~> with radius ot convergence T,
k=0

00

ZB_k-z" ~> with radius of convergence |~

zeih?“

ke -4 ~> with *radius of convergence* T',,=1?

o9 k
Definifion: A Laurent series written as Z%-(Z-ZD is a pair of fwo series:

k=-o00

) k
= Zc\k-(z—z,) with radius of convergence I € [0/00]
k=0

principal part 09 K
—> = O\R-(?:—ZD with *radius of convergence' T, € [0, 0q]

k=-1

&, is called the residue of the Laurent series.,

n<lz-2,) < r&

The Laurent series is a holomorphic function on EZGCE
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r

) k ) ¢
Laurent series: 2 a (?; - ZD with domain @

k= -o0a

I
It the principal part is finite: ’ &— pole at 2,

o K
Definition:  Let 5: U —> @ e given by a Laurent series S(Z) = Zak-(Z—ZD )

k= -o00

1f there is Nei-’l,—l,...:ls such that oy =0  for all k<N

and o # 0 , then we say } has a pole of order |N| al z,.

Example: (a) 5(2) - 1 »— Laurent series kzﬁk' 2
2 =-00

:> 5 has a pole of order 1 at O.

(b) 5(2): 1? _,_%' :> 5- has a pole of order Z at O,

not isolated

Definition: Let j-: U —> ¢ be holomorphic and 2z, ¢ W\,

It there is €>0 with 38(2,3\32.} < LA} e
then 2, is called an isolated singularity of 5— @

Example:

§(z) = 131_1) is holomorphic with domain d:\z ’ }

Proposition: At isolated singularities, we always find a Laurent series locally:

proot later

) B ()\jztoz— kiak\-s —z,)k :\/ £(2)

uniguely given

Three cases for isolated singularities:

(1) vremovable singularity: Vk< 0 : o,=0
(2) pole: 3N€i‘1,-2,...} Vk<N . Qk':o and OquéO

(3) essential singularity: VNQZ-’L-Z,.,.} dk<N o‘k% 0

‘ 0o K _Z:Zkﬂ 0Q k zlk o — 0
. loc ( _ S‘Lh(’t) _ 1_ ) — -1 removable
SRS ) S(Z) = 2 2 gy( 1) (lk+1)|. Z—l‘lj( ) (Zk+1)\_ singularity
k~1
Sin(?) S -0
(2) S(Z) = 2:')_ = % (- 1> (Zk+1)|. pore of order 1

@ 0= ep(t) SSLF e

essential singularity
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Complex infegration: };: (]:% G:

|—»‘> curve integral, line integral, contour integral

7\ N\
[\/v /_5\ j&‘(ﬂ dz
Y d\f ¥
> >
Complex integration on real intervals:
7\
y(4)
C ] m
C Lj continuous X(‘O
‘N ~

For a confinuous map X: l._o\,ﬂ —> (|, we defire:

jb’(ﬂ A~ jRe(b’(U)o\t + L.\S]:M(W({:)> At

R
ordinary Riemann integrals in R

—> (C  be continuous, Then:

Imporfant property:  Let X: ["‘IL’]

L
(£) At

b
< J[ylo)

N\
ot
Example: X: I:O/Zﬂ —_— (]: / J(JC) —a I:—_J %
0 Ly

B \Vie

jeit At = jCos(’c)o\t + L'jsin(t)At

b b
— Sl.h('t)

a
_1<
= - o

Proof: Assume 0 #be {:) At € ([: Define: C:= = . Then:
Iwl
O'F \/(:J/

= -icos(t) + sin(t)

a

b

1 ¢t
(7

a

L L
gy(a At‘ éghz(t)Mt jRe(C- ¥ ﬂ)o\t = jc“.bz(lc) At = é1jbz(£) A = vl €R

e wrow (RS 3(O)] < [eplO] = <) 40
=1
L L
= j Re(c'y(O)] e < [ly(0)] e
74
‘ 4 o\t‘ R (cylE)ae |
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C
\ o £
S RV TR O —> C
o b 4 >
N A
First look at JC: C— R ﬁ
~> fv
~ & 4,>

Definition: For a paramedirized curve X: I:O\IE] —> (C  continuously differentiable

with X): EQIE] —> (]: ,  we define:
b
S de = [5(G0) P) at
b’ o

for continuous functions 5—2 N — (]: with ?ah(y) < \A i

L . >
(i‘_)O\?: = ¢ 1{) . \JC At - lTZt At _ 1_(3_;(::
é;“% BY&(Q'/(;B @Z(:;C C : e L~
— 1_?"(@}1?‘— 1\) =
® J& =2 , ¥ [o]—C T\\
t —> C’,L-% | >
g&(i) ar = \Y&(@_‘Sﬁ)) J:(t) dt = L %\YC’% JL = LJ} L1'lT C'-rjc
I- N ;;,_*;Ejf'ﬂ : iy
() Jz)=12 st [011]—> C & R

t —> (1-t) + it

é;oc(?-) at = jﬂ&(@)-&@ at = (—1@5(1 v (i-1) t>A£

(-1+i)
= (9 £+ 2608 )| = (914 60) = -1

*weighted curve*

\ X(t‘) X(ﬁ)

y(t) anf(b/(h»(X({w) B XQ( u))

y(t S

Another visualisation:

~

n J"m) -yt
= ZJC(XQ‘«» b/& ~ {XQ ) (Jc'w'" {L)
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b (0
g (2) dt 1= 5 t))'f(t) At C/é-j S
i : -
| Xﬁ |:0~,l7] —> (]: continuously differentiable
I
We can extend fhis: X: I__O\,E] — piecewise continuously differentiable
v
there are //0\1, a, | *y, -y Gy ia S [«,L]
a =b

such that Xl]'_ ; is continuously differentiable
67, O

h

define: g&(z) dr = Z gg(i) Az
I’ R (T

N
1?0\7-, , X:[o,zf..v]—><[; /ﬁ\

7. it >
:51-1—-1,%(% :ZT‘-LJ“%C \J

Properties: § | L‘)'- U —> C]:; continuous, X 4 I:O\,[;J—> (]: piecewise continuously differentiable

(a) g( SZ)“‘ Z))O\?: — o(g'g}_)a\& + gj 2) dt for all O(,FC(D

(b) 1f J is X with reverse orientation, Nﬁfﬂi\)_
Y6 Z_(l’) J (o)
( ) . Jc+0\+L)>
i

Ther ggz)a\a = g};g)a\a
.

L

J Sw)- y'(©) At‘ < HJC(J(’c))-J\(t)‘ At

a

- yg(z) de

f

—
o—

b

SOy © 4t < supls@)]- J1y©] 4t

EERan()) a

I
9&,-30_

= max H { Lg“\(%)

ZERan())
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Definition: (A < C  open , 5‘! U —= C .

—F? u —> <]: is called a primitive/antiderivative of JC

\E complex derivative!

f F =%
Fact: 1f 5; u —> (]: has an antiderivative T“—: u — C]: , Then:

Y (b)
J50de = Flyw) - F(yw)

L
X(a) Y [a,t] — U
Proot: : ; 0!
J5@de = S50 p© dt o [2{Fo yNE) s
/ I _ N
= § &Fo o) a F )y
‘Fumdoa{:mi ‘T \\ theorem L
=" (F. )| = Flyw) - Fyw)
Corollary:

1t 5:: u e (]: has an antiderivative and X is closed, then:

$5Ed = 0
y
Example: (a) |\ = @\io} / g(%) — % antiderivative: F(%) = ‘1?
i 2)dz = % >
> fmz 0 o
R A
We know: §§(%) dz = AT

with J:[(],Zﬁ-__l—%u ; X(ﬁ):ej’t
/

:> no antiderivative for l— on d:\io}

(c) (A =:D_7. /N

; T
0g: D —> C C/ D
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Fact: 5-; u — (]: has an antiderivative <:> fﬂz)dz — O
?

X for all closed curves X

Theorem: §: :D — <]: holomorphic

w— not allowed:
open domain/region: open + path—connected @
-y ———
for any fwo points Z,VG:D

there is a curve X:[C\/L-] — D with X(q) = 72 and X(L) =W

1f §§(%) AZ = 0 for all closed curves Y then 5 has an antiderivative.

For 2,,2€ D, define:

F(z):= ﬁc [7) 4t

Tz 3@(0) =2 K(,]) — 5 well—defined:
:> Y;+ ﬁ closed curve: O = fg E) O‘E f_'s: E) At +f§ E) Jt
-t 5 '

= ()4t =f§(§> it
% .

V=
Show: _F\ = 3 ﬁ KE,(%)
V2% line connecting % with 2
2-0

T -2 =2
- g f(7) dt f& [©)dt - SE(2-2)
- o ae - Jseu| = | S0 -se)ic

Yoz 2z ez

max | §(C 2)| - len ) < ma §(0) -5
M 'fekail((‘a’ ) ) 5— >| /Q)M(/X ) fe-gg(:)‘ |
£% 0
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Goursat's theorem: 5:; :D — holomorphic |

X: I:O\,B] —> D closed curve wherethe image is a friangle

and the inner part lies in D, '&

not allowed
Then: §§(£) dz — 0
'

Proo” Basic idea: //‘ 025 -+ y = §
7

Fooo

¥
Decompose Triangle: /\ /@X
Y
B b’ﬁ 1Y+
§§(z) dt = §§(z) dz ﬁ%é 0+t o

§ P Yot Y

- § () de + § f(2) de + § () de + § §(2) de
Ji f 3 e

S50 de| < | §50de| +| §50de |+ | §5 e |+ | $50)
— (_’_ ) §S’(2'-) Az b/d represents maximal value
XU) \\5(1)
Repeat h times: A /\\/ Am Ny /—\A
: ») (3) (4
f A \ s
h—=> o0
1'%
n 20
§S_(£) ae < Ll- §S(2¥) X3 (>K> g lies in the
¥ ?f(h) m“feyi(i; of
T

Complex differentiability at s

S0 = )+ P (o) s 90 e L5
W & %
has antiderivative "1’(%7(2“%3 with /\r(@ ﬁ 0
:> § =0
§S(£) ar _—_| §<f(£> Az é Mo X ‘g((ﬁ)‘ - length( X(h))
X(h) X(M) 2€ Ran (y )
< ax h’(@‘ - ax IZ—%O|'\enq’rh( ?f("))
2€ Ran(y"") 2€ Ran (Y™
/\ /&X ~ A Zw
a N N
> >(\ —>
. \ A (»)
\eV\QJﬂ?/: - X() length Ll X length %,,
(X)
a ? > 0
?xgg(a | ESId] < Y| = 0

2¢ Ean(xc"'))

()
y
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$: D —=C nolomorphic

ASD = §5@d =0
A

DD > e -0

|
& <D = 35@dz =0 -
¥

Cauchy's theorem (for a disc):

5‘2 D %(]: holomorphic where :D = ,BE_QZ,Q (open disc)
X: [&,E] —> D closed curve

= §S(z) de = (
y

Proof;  Show that an antiderivative exists: Y
2*\{[ (everything lies in D )
F) = Js de el 1
ﬁ o Gour sa 1
(@) de = -
R

f 5(0) dC f& @)t - @(E-2)

T — 2 |T€

(x)
Iz

| 60 509 |

2%
- l’ha)( 5_'() }OA len ‘t-&
J}/{r Iekan(‘a’ | M
:> } has an anfiderivative on D :> §§(z) dr — 0 for each closed

curve X in D
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/ X: [«,L;_\ —> (  piecewise confinuously differentiable

Winding number for curves

one turn around 2,

angle s

fwo furns around 2,
fwo turns around 2,
one turn around z,

Special infegral: §1 I lai ,  for X: |__O,2'.r__|—> C RN QNN CLt
o =
]

ot

bai , for Yilo]l—>C , tr—>¢
0 , for X= I:o\/L—_] —> with image in a disk
where 0 & disk

1 .
:"—> ; 1?0‘2 = 1 for X:I:O,Zﬂ—><]:, Jcl%cft

Definition:  The winding number of a curve X around 2_€ (C (:Zo?.( Rav\()()>

is defined by:

wind(y, &) 1= — [ 4

lri

Fact: X closed :> wind(y, %) € 2

Proof: Assume 2,=0 V& [a,b] —> C  closed [)
A~ W

Write Y as b/(ic) =f(t()\\'ew(t€ U w >

piecewise continuously differentiable

1) _ 1 Ly(t) L
g%A% G yodt = jf(t),ef“%’(*) (f\(t)'e T sl ig)e \P(t)>°|t

6 f\ (t) 6
= qjm dt + Lg 9(¢) db —
L b
- )] e > ) = 509
\7( o f o %’(L) = ‘f(&) + 25k
ke 2

= 0 + vk
’—_> in\ol(I,O) = k
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winding number: winol(y, 2) = A 1

Iri -2,

Definition: For [a,b] —> C  closed :

ext(y) = £Z°€ C\Ran(y) | wind( ', %)

0]

nt(y) 5= {2 C\Ranly) | vind(y, 2 # O]

Extending Cauchy's theorem:

J(: D —> € nolomorphic | a/ closed, Int( y) v Ran(y) = D

it s D
D = disc @ _> S_(&) dr = ()

y
D = rectangle g pav_2>3 §S—(?_) dt = 0
'

Jez
‘F 66d 6d 3 = Goursat
proof v F2) ; 5(0) de %F\g §5 "0
2 ﬁ X‘t*ﬁ*b@’i
7 ' z %

Z5
works also: CD _ @ | P _ '

Cauchy's theorem (general version):

}: D — (]: holomorphic b’ o\oseol, Int( )) v Ran(x) <D

.:> 5&(&) Ar = 0
¥

Cauchy's Theorem (for some domains):

}: D — C holomorphic X: [O*IL’] —>D closed curve,

D comex B or
1f j):@ or :>§S(£)0\2_,___0
y

D star domains #

Appendix:
Proof from part 23 can be transtformed 1o a proof for domain D= @

Just fix point 2, here:

.

Then for every 2z, define the path Y% in The following way:
2

So it's a well-defined polygon path:

% X/\
2,
oursat

6
Hence, we have §§(2;) Ar = O if 7 and z are close enough,
S R

So for F(—i) P f§(§> O‘E , we also geft:
4

FO-FO

[aY

Tt — 2

/
| 2-1

S5 de - [5) ae - S@(E-2)
Ié %

2t | Joto g

1 T2
< g max |(0) 50| - tena (1) 3 0

TeRan ()

:> 5 has an antiderivative on D = §S(g) dr = () for each closed
b’ curve X in D
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N> Cauchy's theorem applicable

\> keyhole contour

Assume: G- 3,_(20)\{20} —> (. holomorphic

Xgls Cauchy's theorem

3;5(1) At :({ 0

Ves § 1:@/ -

Q)
split it up: Ve,s
(2) ()]

c,S — fes + JES ZS: )/gls

= (g4 + sz)o\e ¢ [y@de jjm\a _ 0

1) )]
os

(C(/S Kc,s (c,s

What happens for & —> O t

¥ ro
1

‘yﬂ 2) At 55 )o\a = ‘fj(i)o\%

< max j(i)‘-\enq’rh((’)
G(,? J_—'“) ( ze
(3) foi o®
S{ ) /\:i__> :
(2)(4)
b/c(? Cauchy's theorem
= o~ 3 = }32)0\?& = 0
fod
§—=0
(j z) ot + fj(&) dz =
In summary: For 5——> O :
jj(i) at + jj(z) e = O
_[.(1) f:)
Result: J-j (2_‘) Az — jﬁ (2.) Az same infegral value
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Cauchy's infegral formula

§g(a dr = ()
¥

Theorem: §: D —> C holomorphic B (z,) < ), |.e
Y [a,b] —> C oclosed curve given by

the circle on QZBF(%O) (wind(y/ %) = 1)

Then: 5&) = 7."'

2)c_

for all 2e B.(2,)

Proof: CE :P)F(Zo)\{z} —— . nolomorphic T>r
(o) vtk B(z) <D

§j(t)dt \as;v‘ideo §5(E) AE for all €>0 , e<r

9:Br(%n) zztn:(;jv ‘g$€(2> and small enough

= 630 4 § 0 -5 56 e

MBe(2) (-2 3. (2) (-2

- § A (D
Q/fx/ %\‘@/\/_/

Lt 2
§E> 5()JC‘<quM‘2~ " 5:(‘)

- e
B(2) (e

£->0 O |:|
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Fact: g; D — C holomorphic. Then:

(a) _'S:(h)(z) exists for all 2e D, ne N “

:S:(h)(z) _ h!.

for all 2e B.(2,).

(c) In B.(%), { is a power series:

$@) = \Z})o\k-(a-zo)k for Oy = - J(m(zoﬁ

i
Proof: 2?‘—‘:&(0 — g §(§> JC
P o E

- § £(0) It
0By O Rt
— g(t) 1 - |2—jo\|—
- § (-2 | 1-27% at |(7| Y <1
23 o (-2, vi:l: geometric seri
=
_ ¢ D <Oy
~ : dt
9§(ﬂ (-2 ga\
uniform comvevqemce\’ - g(() K
= Z § (-2 <§%> It
k=0 93 () 0
Za\'k.(é 2 Y for X = (g(_?)h,dﬁ
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Cauchy's inequalities: J(; P —> C holomorphic ) :Br(’é,,) <.

@]

h!
< — - sup
r 2€23.(z,)

Then: ‘§(n)(2o)

Proot:
roo (n) h! g(() | ”
} (Za) = ) (( 2 C parametrized curve: & + 2,
23.(2.) o {'«C[_O,Z'.T__l
s 4
. h. ,((r-ef +2°\) ot
| e : rie At
L cENNH
0 (r—e >
ol ; L&
= |75 Jireten) &0 a\é‘
0
, /A ’
h. 1 j\‘ 23 ‘ he 1
< S - < —— ).
I ua& T %ZZ%E@‘“‘”'
ésup |§(2)| ]

2€293.(z)

Application: \)(: C —> € holomorphic and bounded <23“(E ‘J('(ZH = C>
€
(Liouville's theorem) )
= |§'(2)
)
:> } (20) — O for all 2-06',([,
in: C — C

= }; C —> C is constant < ” >

|
< ¢ foral r>0 , 2eC
-

not bounded
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)[: C — C holomorphic
with known values {(2,f(zﬂ | e 9&(30)}

ﬂ : (E S (]: holomorphic with same values on 9&(’%)

Cauchy's integral formula
_> 5= g o B.(2,)

Identity theorem: ¥ 9 D —= C nolomorphic , D open domain (connected).

Then: {26@ | O 5(2)} has an accumulation point in D
=
529
&
There is ce D with gm(c) - jw(c) for all h=0,11,..

What is an accumulation point?

foD is called an accumulation point of the set ME& D ' D
M

f for all open set U with peld : NS n M 26

M:{N e o o o ooo@oooooooo no accumulation point

M = {% | he€ |N’§ @ o o o J O is accumulation point

Proof idea: L):: 5 -9 holomorphic, Show the equivalence of:
(1) M = {26@ | \q(ﬂ = 0 } has an accumulation point in D

(2) h =0

(n)
(3) There is ce D with \r\ (C> =0 for all h=0,1,1,..

(1) =>(3) (Covﬁvaposi’fiom: 1(3) = —1(1)7

()
For each ce D there is a minimal m with L\M(C) + 0

and L,(’i—) = iﬁ@(t_c_\)‘( = Qh.aft_c,ﬁm-\— @i !
k=m VIS\J >}<O

Ak

= h(2) £ 0 for 2eW\id
:> U\SC)_S AM = QS

Ak = {Z‘E,:D | "\U“(27: OE closed :> A‘.: O Ak closed
1 3) =0

g
A is also open: CE€ A

:D connected

= A=D = h=0

()= ¥ 0

(3)=(2)
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Identity theorem: D ( open domain (connected). %
j:, VE :D —> C  nolomorphic.

{ZQ:D | (@) = 3(2)} has an accumulation point in D —_:_—> } = j

Example: R —> [ given by cos(x) = z((—

Consider a holomorphic function j D —C vithn Dn TR ;£¢

and with \9‘ — o M |
DalR = >

DalR &y = -

identity theorem

—> 3(2 Z((— for every 2€ )

:_—,> cos has a unigue extension for @ as a holomorphic function,

General formulation: }e Cm<[R> and D (. open domain (connected)

itn Dol ¢  PE= p

u g -
:> there is at most one holomorphic function 3 . D —C

with —
Iy,

DalR
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Residue ~> Residue Theorem

Short recapitulation: Closed curve integrals:

5: D —> C holomorphic.

(1) F: D —> C antiderivative of § (F\ :£> D
= §§(a dr = 0
S

(2) D star domain or ) = @
= b de

I
S

() D =C\jat | 5(1}:;—% —> §§(z) At = 27 -vind(y, %)
Y

Combine (1) and (3) for Laurent series:

9:@:&_&: rL<|z—z,|<r13 , §(z):iak-(z—z,)k

-1
—> §J((z) At = a_1§(z—za} dt = 4 Z’ﬁ'i,-winol(a’, %)
Y f

L/'Y\J
Res(§ ,ZA residue

-
Fact: Let 5 be a Laurent series defined on @ with m<r<r,.

2,

Then: Res(§,2,) = a, = Z:TL§§(£) At

9B.(%)

Definifion:  Let 5-. D —> C be holomorphic and 2z, be an isolated singularity of f.

3, (2)
1t 33;(%0\{%3 < D, then we define: :D

Res(g,zb = z1r..~t§3((£) Az

28 (2)
residue of { at g
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3.(2) D
Residue: Res S Z) §)C z) dt
935(2‘0)

B \{et < D

Example: 5: (]: — (]: holomorphic ~—> ;J; (]:\ i%‘,k% (]:

~ () := §(=)
RGS(S,ZJ d= Res(glzh = %...é;)((}') ar = 0 5: ) §

9B2)

Proposition: 5: D —> € holomorphic , 2, isolated singularity.

1f §|_ is bounded, then RGS(S,ZA = 0.
Be() \ {2t
Prooft: §)( 5) de 2 5( { ftnjkk(x> 8%0
22 E(Z-,) ZE Ran())

<c Tue => Res(§.2,) =0

Residue for poles

5‘ D —> € nolomorphic , 2, isolated singularity.

2, pole <:> the function h: :BE(%Q%(]: with L\(%} :;_(z) , M%,,):O

is holomorphic

Example:

\Rz):zi— ~>  h(2) = 2=,

% 71
K po\e &~ holomor phic /

Fact: 5: D —> C has a pole at 2, (of order N)

<:> There is a unigue N€ |N and non—vanishing holomorphic function

9 :Bg(%o)% C  such that
}(7:) = (i'%ogN' j(z) for ze B (=)

<:> There is a uniqgue NS IN and a holomorphic function 5: B. () — C:

Hz) = :

q'N

Ty IO e

Theorem: 3:: D — € holomorphic , 2, isolated singularity.

1f 2, is a pole of order N, then: ’/(N-O’rh complex derivative

4 N4
Res(§,2,) = (N VD) QL‘, <E)(£-%O3N e

Example: }(}) = t,=0 is a pole order 7

1(1 ONE
Res(§,2,) = % gﬁo ( )(* o) §2) = L %(1 >

>0 1+2
st ‘w —
2;0 < '\+2)>
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+:I—=>C

holomovrphic

isolated singularity 2,

ReS(S,ZJ 3= Z{lej;}(z) Az

9B(®)

= IlwiRes(§,z2,) = §§(z) ar = §J((Z) de

9B(2) c

circle around 1z,

:> wmol(y %) oL Res 5 2) §)§ 2) Az

L-/_ connected
Residue theorem: D C open domain, JCi D—=C holomorphic |

wo Eliereet 2, 1, 2, isolated singularities off )(:[O\,L]% D oclosed curve

1’ veey /
with In’r(g) §Du§21,%1,...,%h15.

P B5t e = Bt s
Y .

O

Proof: ij C open disc | D :D\& 2 B0 g e, 2,,]5_ o 'i

Cauchy's theorem

= §§(z) dr = 0
y ¥
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JXde =1
1+ X
— 00 R
N\ ¢
1)24: J[&(x) Ax where §(x) = 'T+><‘
¢
where §(’Z) = ']Z+E‘
wERR)— €
t—t

residue theorem: §J((?_) ar = Jari z Res(g 'ZJ)
3=1

rR
//
J\g(ﬂ dz + Jg(?) dz wheve Jg(ﬂ 4z < max |§(%)| \engfh(«gR)
b4 gR § R 2€ Ran(s) ™
|
(ReY’
']"'CRGL")(
1 R-)OO
< (¢ R,;'T-R — 0
Hence: = i
X dx = L J5@de = L 950 de
1+x R>o0 R>o0
- 00 " I
= Z’u‘LZEes(S,z\
Im(® >0
T 3T Si %
poles: 1+X‘:() — ?_1=361 2:7':36’ %a::BG
formula for simple poles: Res(%,z) = g\(z)
oQ 4 _
X . 1 -i% - LI - CI
:> j1+x‘ dx = Z’N'L-(C—C ¢4 C—CB . 2—65 ‘)
~00
= ig’ﬁ'i:(l.S‘\h(—: + LS‘“('K—Z"\)"' LS”"(——')>
\'—’V'\_/




